Astronomie

Redshift, vitesse, distance

Redshift, vitesse, distance


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Comment le décalage vers le rouge, la vitesse (récession) et la distance d'une galaxie sont-ils liés ? Je comprends ce que v=HD indique. Je suppose donc que Hubble a mesuré une relation directe entre la distance et la vitesse de récession d'une galaxie.

Je suis confus au sujet de la relation entre le redshift et les deux autres. Existe-t-il une relation directe entre le redshift et la distance et entre le redshift et la vitesse d'une galaxie ?


Bienvenue sur StackExchange. Bonne question. La loi de Hubble dit que la vitesse d'un objet loin d'un observateur est directement proportionnelle à sa distance par rapport à l'observateur. En d'autres termes, plus quelque chose est éloigné, plus vite il s'éloigne de nous. Le décalage vers le rouge indique à quelle vitesse une étoile s'éloigne de nous et nous pouvons donc obtenir la distance. L'équation de Hubble indique que $v = H_0cdot D$$H_0$ est la constante de Hubble. Il est logique que plus une étoile est éloignée, plus elle se déplace rapidement.

Le décalage vers le rouge est mesuré pour une étoile et pour les petites vitesses par rapport à c on peut écrire que $z approx frac{v}{c}$. Pour des vitesses plus élevées, l'équation est $z approx frac{Hcdot D}{v}-1$

Une bonne description générale est donnée ici.


Quelle valeur de décalage vers le rouge est utilisée dans la mesure de la vitesse de la distance


Donc ma première question est quelle est la valeur $z$ ici ? Est-ce le redshift observé ou le redshift cosmologique ?

En outre, la relation entre le décalage vers le rouge observé et cosmologique est donnée.

Si nous utilisons le redshift cosmologique, en utilisant l'équation ci-dessus, nous pouvons écrire,

C'est donc ce que nous avons mis en (4) ?

Edit : Pour la source, vous pouvez regarder ici https://arxiv.org/abs/1907.12639 Eqn(16) et (18)


Imaginer l'univers

Objectifs d'apprentissage : Les élèves découvriront l'expansion de l'univers, comment le décalage vers le rouge nous indique la vitesse de récession d'une galaxie et comment, à partir de cela, nous pouvons déduire la distance d'une galaxie.

Trouvez la distance d'une galaxie lointaine à partir de son spectre.

Partie 1 : Mesurer les longueurs d'onde au repos

Partie 2 : Mesure des longueurs d'onde décalées vers le rouge

Ressources : feuille de travail, spectromètre d'optique océanique, carrousel de tube à spectre à vernier, cordon USB, cordon à fibre optique

L'effet Doppler décrit le changement de fréquence et de longueur d'onde des ondes émises par une source qui est en mouvement par rapport à l'observateur. Lorsque la source se déplace, chaque pic de la forme d'onde qu'elle produit est émis depuis une position plus proche ou plus éloignée (selon que la source se rapproche ou s'éloigne de l'observateur). De ce fait, la fréquence à laquelle les pics arrivent à l'observateur change et la longueur d'onde se décale. L'effet Doppler peut être vu, non seulement dans les ondes sonores (comme le changement de hauteur d'un véhicule qui passe), mais aussi dans les ondes lumineuses.

Au fur et à mesure que les objets se rapprochent ou s'éloignent d'un observateur, la lumière atteignant l'observateur se déplacera vers l'extrémité bleue ou rouge du spectre (respectivement). Lorsque la vitesse de l'objet est faible par rapport à la vitesse à laquelle les ondes se propagent (la constante, c, pour les ondes lumineuses), l'amplitude de ce décalage vers le bleu ou vers le rouge est proportionnelle au rapport de la vitesse de l'objet par rapport à la vitesse à laquelle les vagues voyagent.

Le décalage Doppler dans le spectre d'un objet (comme une étoile ou une galaxie) peut généralement être déterminé en comparant les longueurs d'onde des caractéristiques du spectre de l'objet, telles que les raies d'absorption et d'émission, aux longueurs d'onde attendues pour certains éléments et composés chimiques.

Au début du 20 e siècle, l'astronome Edwin Hubble a observé que les spectres des galaxies lointaines étaient significativement décalés vers le rouge. Hubble a interprété ce changement dans le spectre comme un décalage Doppler et postulant que ces galaxies lointaines s'éloignaient de la nôtre. Hubble a finalement déterminé que la vitesse à laquelle ces galaxies reculaient était proportionnelle à leur distance, et à partir de cette observation, il a pu conclure plusieurs faits importants sur la nature de l'Univers.


  • Tous les observateurs des différentes galaxies voient le même expansion autour d'eux.
  • Pas de centre - tous les observateurs apparaître être au centre.
  • NE PAS mouvement à travers espace.
  • Expansion de espace-temps : galaxies emportées.

Au fur et à mesure que l'Univers devient 2 fois plus grand, les distances entre les galaxies deviennent 2 fois plus grandes.

Noter: Tandis que le distances entre les galaxies augmentent avec le temps, la tailles des galaxies restent les mêmes. C'est parce que les galaxies sont liées entre elles par la gravitation localement, et ne partagez donc pas global expansion de l'espace-temps autour d'eux.


Cas 2 : Cas non relativiste du déplacement d'un observateur

Dans ce cas, v est bien inférieur à c. Ici, $Delta l$ est différent.

Nous obtenons le décalage rouge comme suit &moins

Depuis v << c, l'expression du décalage vers le rouge pour les cas I et II est approximativement la même.

Voyons en quoi les décalages vers le rouge obtenus dans les deux cas ci-dessus diffèrent.

Par conséquent, $z_ − z_$ est un très petit nombre en raison du facteur $(v/c)^2$.

Cela implique que, si v << c, nous ne pouvons pas dire si la source se déplace ou si l'observateur se déplace.

Comprenons maintenant le Les bases de STR (Théorie spéciale de la relativité) &moins

La vitesse de la lumière est une constante.

Lorsque la source (ou l'observateur) se déplace à une vitesse comparable à la vitesse de la lumière, des effets relativistes sont observés.

Dilatation du temps : $Delta t_o = gamma Delta t_s$

Contraction de la longueur : $Delta l_o = Delta t_s/gamma$

Ici, $gamma$ est le Facteur de Lorrentz, supérieur à 1.


Redshift, vitesse, distance - Astronomie

Ce que je trouve plus "floue" à éliminer, c'est la plus longue portée
distances (intergalactiques) qui sont basées sur des décalages Doppler dans
raies spectrales résultant de la vitesse radiale des objets par rapport à
Terre à ces distances difficiles à imaginer.

Y a-t-il donc des articles qui ont été publiés à la connaissance de qui que ce soit
qui montrent les distances basées sur le décalage vers le rouge pour les étoiles proches à côté de leur
estimations basées sur la parallaxe ? Si les deux mesures sont identiques pour
étoiles proches jusqu'à, disons 30 ou 40 années-lumière, alors je peux prendre le
Le décalage vers le rouge mesure plus loin (là où la mesure de parallaxe n'est pas
faisable) avec plus de confiance. C'est un problème " brûlant ".

>Alors, y a-t-il des articles qui ont été publiés à la connaissance de qui que ce soit
>qui affichent les distances basées sur le décalage vers le rouge pour les étoiles proches à côté de leur
>Estimations basées sur la parallaxe ? Si les deux mesures sont identiques pour
>à proximité d'étoiles, disons 30 ou 40 années-lumière, alors je peux prendre le
>redshift mesure plus loin (là où la mesure de parallaxe n'est pas
>faisable) avec plus de confiance. C'est un problème " brûlant ".

La précision de la corrélation du redshift et de la distance sur de longues distances a été
testé par rapport à d'autres méthodes, impliquant normalement des objets de types dont l'absolu
luminosité que nous pensons connaître. Le fait que ces approches complètement différentes
produire des résultats très similaires rend la relation redshift-distance très
convaincant. Il est largement, mais pas universellement, accepté.

Chris L Peterson
Observatoire Cloudbait
http://www.cloudbait.com

> Ce que je trouve le plus "flous" à éliminer, c'est la portée plus longue
> distances (intergalactiques) basées sur les décalages Doppler dans
> raies spectrales résultant de la vitesse radiale des objets par rapport à
> Terre à ces distances immenses difficiles à imaginer.

> Y a-t-il donc des articles qui ont été publiés à la connaissance de qui que ce soit
> qui affichent les distances basées sur le décalage vers le rouge pour les étoiles proches à côté de leur
> Estimations basées sur la parallaxe ? Si les deux mesures sont identiques pour
> étoiles proches à, disons 30 ou 40 années-lumière, alors je peux prendre le
> Le décalage vers le rouge mesure plus loin (là où la mesure de parallaxe n'est pas
> faisable) avec plus de confiance. C'est un problème " brûlant ".

Les distances aux galaxies les plus proches peuvent être mesurées par
en utilisant la propriété carrée inverse de l'intensité lumineuse,
utilisant des étoiles variables Céphéides comme bougies standard.

> Je me demandais si quelqu'un s'est renseigné sur les dernières profondeurs à ce sujet
> sujet. Je suis très heureux de prendre des changements de position astrométriques dans
> les positions des étoiles proches, résultant du mouvement orbital de la Terre sur un
> base annuelle, comme base SOLIDE pour le calcul des distances définitives à
> les étoiles les plus proches. Je connais la ligne de base (distance Terre-Soleil), la
> erreurs de position de mon équipement d'enregistrement dans la mesure de la parallaxe et
> Je connais ma trigonométrie, donc je suis 100% confiant dans les distances citées à
> peut-être jusqu'à 30 ou 40 années-lumière.

> Y a-t-il donc des articles qui ont été publiés à la connaissance de qui que ce soit
> qui affichent les distances basées sur le décalage vers le rouge pour les étoiles proches à côté de leur
> Estimations basées sur la parallaxe ? Si les deux mesures sont identiques pour
> étoiles proches à, disons 30 ou 40 années-lumière, alors je peux prendre le
> Le décalage vers le rouge mesure plus loin (là où la mesure de parallaxe n'est pas
> faisable) avec plus de confiance. C'est un problème " brûlant ".

>Je me demandais si quelqu'un s'était renseigné sur ce sujet
>sujet. Je suis très heureux de prendre des changements de position astrométriques dans
>positions d'étoiles à proximité, résultant du mouvement orbital de la Terre sur un
>base annuelle, comme base SOLIDE pour le calcul des distances définitives à
>les étoiles les plus proches. Je connais la ligne de base (distance Terre-Soleil), la
>erreurs de position de mon équipement d'enregistrement dans la mesure de la parallaxe et
>Je connais ma trigonométrie, donc je suis 100% confiant dans les distances citées à
>peut-être jusqu'à 30 ou 40 années-lumière.

Il énumère huit méthodes d'estimation de distance qui fonctionnent pour les objets dans
différentes plages de distance.

Strobel compte la méthode de parallaxe que vous décrivez comme la deuxième étape. La première étape
mesure la distance de base Terre-Soleil.

Nous supposons que les lois physiques qui déterminent les propriétés de
les étoiles sont les mêmes que celles des étoiles proches, et utilisent les résultats d'une
étape pour calibrer les mesures de l'étape suivante. Inexactitudes
s'accumulent d'étape en étape.

Certaines des étapes reposent sur notre capacité à mesurer d'infimes différences de
luminosité apparente. À mesure que notre technologie s'améliore, nous apprenons à mesurer
luminosité plus précise, obtenir de meilleures estimations de distance pour cela
étape et obtenir un meilleur étalonnage pour la prochaine étape de la chaîne.

--
Mike Williams
Monsieur des Loisirs

> Ce que je trouve le plus "flous" à éliminer, c'est la portée plus longue
> distances (intergalactiques) basées sur les décalages Doppler dans
> raies spectrales résultant de la vitesse radiale des objets par rapport à
> Terre à ces distances immenses difficiles à imaginer.

> Y a-t-il donc des articles qui ont été publiés à la connaissance de qui que ce soit
> qui affichent les distances basées sur le décalage vers le rouge pour les étoiles proches à côté de leur
> Estimations basées sur la parallaxe ? Si les deux mesures sont identiques pour
> étoiles proches à, disons 30 ou 40 années-lumière, alors je peux prendre le
> Le décalage vers le rouge mesure plus loin (là où la mesure de parallaxe n'est pas
> faisable) avec plus de confiance. C'est un problème " brûlant ".

Si vous acceptez 20 km/s-Mly comme constante de Hubble (H0) alors la valeur associée
le taux de récession à 40 al sera :

V = H0 * D/(Mly / 1e6 ly) = 0,0008 km/s

Vous essayez de mesurer le décalage vers le rouge associé à une récession de
seulement 0,8 m/s. Étant donné que la vitesse des étoiles se mesure en centaines
et des milliers de km/s, vous auriez du mal à établir une corrélation
distance au décalage vers le rouge pour une portée aussi courte.

> Si vous acceptez 20 km/s-Mly comme constante de Hubble (H0), la valeur associée
> Le taux de récession à 40 ans sera :

> V = H0 * D/(Mly / 1e6 ly) = 0,0008 km/s

> Vous essayez de mesurer le décalage vers le rouge associé à une récession de
> seulement 0,8 m/s . Étant donné que la vitesse des étoiles se mesure en centaines
> et des milliers de km/s, vous auriez du mal à établir une corrélation
> distance au décalage vers le rouge pour une portée aussi courte.

Les étoiles proches peuvent être liées gravitationnellement et moins mobiles que
aux galaxies volantes, mais beaucoup d'entre elles ont facilement mesuré
radiale négative (vers la Terre) ou positive (loin de la Terre)
vitesses. Ne produisent-ils pas des décalages vers le bleu ou le rouge dans le spectre
lignes? Je parie qu'ils le font, mais vous ne pouvez pas les relier à la distance - juste
leur vitesse relative à la Terre.

Il me semble que l'échelle intergalactique des relations redshift-distance
sont dans un tout nouveau jeu de balle, sans tous les jours "Earthly"
comparatifs. C'est pourquoi je le trouve tellement FOUZZY !

> > Si vous acceptez 20 km/s-Mly comme constante de Hubble (H0), la
associée
> > Le taux de récession à 40 ans sera :

> > V = H0 * D/(Mly / 1e6 ly) = 0,0008 km/s

> > Vous essayez de mesurer le décalage vers le rouge associé à une récession de
> > seulement 0,8 m/s . Étant donné que la vitesse des étoiles est mesurée en
des centaines
> > et des milliers de km/s, vous auriez du mal à établir une corrélation
> > distance au décalage vers le rouge pour une portée aussi courte.

> Existe-t-il une relation linéaire ou non linéaire simple entre le montant X
> du décalage vers le rouge dans les raies spectrales correspond à la distance Y et Z
> vitesse radiale ? Quelle est la tolérance de précision pour l'Andromède
> distance citée de la galaxie spirale ? Son nominal est coté à 2,2 millions
> années-lumière, c'est +/- 1 million de l/an. ou est-ce à débattre ?

> Les étoiles proches peuvent être liées gravitationnellement et moins mobiles que
> aux galaxies volantes, mais beaucoup d'entre elles ont été facilement mesurées
> radiale négative (vers la Terre) ou positive (loin de la Terre)
> vitesses. Ne produisent-ils pas des décalages vers le bleu ou le rouge dans le spectre
> lignes ? Je parie qu'ils le font, mais vous ne pouvez pas les relier à la distance - juste
> leur vitesse relative à la Terre.

> Il me semble que l'échelle intergalactique des relations redshift-distance
> sont dans un tout nouveau jeu de balle, sans tous les jours "Earthly"
> comparatifs. C'est pourquoi je le trouve tellement FOUZZY !

>Y a-t-il une relation linéaire ou non linéaire simple entre le montant X
>of le décalage vers le rouge dans les raies spectrales correspond à la distance Y et Z
>vitesse radiale ?

Une fois que vous avez la vitesse, la distance est d = H0 / v, où H0 est le Hubble
constante, généralement prise à environ 75 km/s/Mpc.

> Quelle est la tolérance de précision pour l'Andromède
>distance citée de la galaxie spirale ? Son nominal est coté à 2,2 millions
>années-lumière, c'est +/- 1 million de l/an. ou est-ce à débattre ?

La galaxie d'Andromède est liée gravitationnellement à la nôtre, donc le décalage vers le rouge ne peut pas être
utilisé pour estimer sa distance, ni ne peut être utilisé comme un test de la
Relation Hubble. En fait, Andromède se dirige vers la Voie Lactée.

>Les étoiles proches peuvent être liées gravitationnellement et moins mobiles que
>to galaxies volantes, mais beaucoup d'entre elles ont été facilement mesurées
>radiale négative (vers la Terre) ou positive (loin de la Terre)
>vitesses. Ne produisent-ils pas des décalages vers le bleu ou le rouge dans le spectre
>lignes ? Je parie qu'ils le font, mais vous ne pouvez pas les relier à la distance - juste
>leur vitesse relative à la Terre.

Comme vous le notez, il n'y a pas de relation entre la distance et la vitesse relative pour
étoiles dans notre voisinage.

Chris L Peterson
Observatoire Cloudbait
http://www.cloudbait.com

> > > En pratique, il sera très difficile de corréler la distance
à
> > > parallaxe vs décalage vers le rouge.

> > > Si vous acceptez 20 km/s-Mly comme constante de Hubble (H0), la
> associé
> > > Le taux de récession à 40 ans sera :

> > > V = H0 * D/(Mly / 1e6 ly) = 0,0008 km/s

> > > Vous essayez de mesurer le décalage vers le rouge associé à une récession de
> > > seulement 0,8 m/s . Étant donné que la vitesse des étoiles est mesurée en
> des centaines
> > > et des milliers de km/s que vous auriez du mal à mettre en corrélation
> > > distance au décalage vers le rouge pour une distance aussi courte.

> > Existe-t-il une relation linéaire ou non linéaire simple entre le montant X
> > du décalage vers le rouge dans les raies spectrales correspond à la distance Y et Z
> > vitesse radiale ? Quelle est la tolérance de précision pour l'Andromède
> > Distance citée de la galaxie spirale ? Son nominal est coté à 2,2 millions
> > années-lumière, c'est +/- 1 million de l/an. ou est-ce à débattre ?
> Le fait est que la mesure du décalage vers le rouge s'améliore à des distances plus longues. À
> de petites distances, d'autres mouvements ont un effet plus important.

> > Les étoiles proches peuvent être liées gravitationnellement et moins mobiles que
> > aux galaxies volantes, mais beaucoup d'entre elles ont été facilement mesurées
> > radiale négative (vers la Terre) ou positive (loin de la Terre)
> > vitesses. Ne produisent-ils pas des décalages vers le bleu ou le rouge dans le spectre
> > lignes ? Je parie qu'ils le font, mais vous ne pouvez pas les relier à la distance - juste
> > leur vitesse relative à la Terre.
> Précisément. C'est pourquoi le redshift n'est _pas_ la mesure privilégiée pour
distances.
> Les variables céphéides, les quasars, etc. sont les 'mesures' préférées. Le point'
> à propos du redshift, est-ce que si vous prenez le redshift moyen affiché à partir d'un lot
de
> objets (afin que les erreurs individuelles s'équilibrent), cela ne
poursuivre
> la tendance attendue.

> > Il me semble que l'échelle intergalactique des relations redshift-distance
> > sont dans un tout nouveau jeu de balle, sans "Terre" tous les jours
> > comparatifs. C'est pourquoi je le trouve tellement FOUZZY !

Il y a plus d'une façon de mesurer la "distance" dans l'univers.

> La distance jusqu'à Andromède est déterminée à l'aide de la luminosité. La première méthode utilisée
> Les variables céphéides, qui ont une relation entre la magnitude absolue et
> période. D'autres méthodes de luminosité utilisent des supernovas ou des modèles de galaxie entière
> sortie. Je crois que la distance acceptée a récemment été revue à la hausse, pour
> autour de 2,8 Mly, mais je ne sais pas quelle est la tolérance à ce sujet.

> J'ai toujours eu l'impression qu'on ne peut pas observer directement
> des étoiles variables céphéides individuelles dans d'autres galaxies, car elles
> être trop loin/faible et accablé par la luminosité de la galaxie
> lui-même. Peut-être que la spirale d'Andromède est un cas particulier, est grande et
> suffisamment proche pour permettre de telles observations. La période de luminosité peut-elle
> relation des Céphéides être utilisé pour calculer la magnitude absolue (et
> donc distance) aux amas d'étoiles globulaires dans le halo de notre Milky
> Chemin, je me demande? Les céphéides se produisent-elles facilement dans de tels amas ?

Les céphéides ont une magnitude absolue comprise entre -3 et -7. le
le module de distance du LMC est d'environ 18, ce qui signifie que les étoiles du LMC
apparaissent 18 magnitudes plus faibles que leur magnitude absolue. D'où le
Les céphéides dans le LMC devraient être dans la gamme de magnitude 11 à 15.

Le module de distance de M31 est d'environ 24,5, il y a donc des céphéides dans
la gamme de magnitude 17,5 à 21,5.Probablement trop sombre pour le visuel
détection dans les télescopes amateurs, mais pas hors de portée d'un CCD
utilisé à une grande échelle d'image. En fait, les Céphéides peuvent être utilisées assez
un peu plus loin que M31.

Le module de distance de tout objet peut être calculé directement à partir de son
distance d en parsecs :

où log est calculé en base 10. Par exemple, M31 vaut 800 000 parsecs
loin (environ), donc

MS = -5 + 5 log 800000 = -5 + 5 (5,9) = 24,5

Chaque parsec équivaut à environ 3,26 années-lumière, donc 800 000 parsecs représentent environ
2,5 millions d'années-lumière.


Le coin de l'astronomie sur http://astro.isi.edu/
Page d'accueil non officielle de C5+ sur http://astro.isi.edu/c5plus/
La page d'accueil de PleiadAtlas sur http://astro.isi.edu/pleiadatlas/
Ma propre FAQ personnelle (SAA) sur http://astro.isi.edu/reference/faq.txt

>J'ai toujours eu l'impression que nous ne pouvons pas observer directement
>étoiles variables céphéides individuelles dans d'autres galaxies, car elles
>être trop loin/faible et accablé par la luminosité de la galaxie
>self.

Ses calculs étaient légèrement erronés parce qu'il ne savait pas qu'il y avait
étaient deux types différents d'étoiles variables céphéides, mais il y avait
rien de mal à ses observations.

--
Mike Williams
Monsieur des Loisirs

> C'est la méthode utilisée par Hubble pour mesurer les distances suffisamment
> galaxies pour pouvoir déterminer que celles en dehors de l'amas local
> s'éloignaient de nous. Il a observé des Céphéides dans des galaxies jusqu'à environ
> 32 mégaparsecs (plus de 40 fois la distance jusqu'à M31).

Probablement, j'en demande trop !

> > C'est la méthode utilisée par Hubble pour mesurer les distances suffisamment
> > galaxies pour pouvoir déterminer que celles situées en dehors de l'amas local
> > s'éloignaient de nous. Il a observé des Céphéides dans des galaxies jusqu'à environ
> > 32 mégaparsecs (plus de 40 fois la distance jusqu'à M31).

> La loi de Hubble et la validité du décalage vers le rouge pour les hypothèses de distance
> semble s'effondrer complètement quand il s'agit de Quasars. Alors pourquoi est-ce qu'on
> fait tellement confiance aux distances basées sur le décalage vers le rouge dans l'ensemble ? Est-ce simplement
> parce que c'est le *seul* modèle le mieux adapté que nous ayons actuellement ? Avoir n'importe quel
> Les céphéides ont été directement observées dans des galaxies assez éloignées
> pour que les redshifts « envolés » deviennent viables pour une distance efficace
> mesures et, si oui, quelle est la corrélation entre
> distance vs distance basée sur le décalage vers le rouge dans un tel cas ?


Redshift gravitationnel et le chiot : mesurer la masse de Sirius B

Les naines blanches sont des vestiges stellaires fascinants laissés à la fin de la vie de nombreuses étoiles. Seulement de la taille de la Terre, ces minuscules objets peuvent potentiellement être plus massifs que le Soleil. Et contrairement à la plupart des objets exotiques que nous étudions en astronomie, nous en avons un juste à côté de nous ! Située à seulement 8,6 années-lumière, Sirius (l'étoile la plus brillante du ciel nocturne) est en fait un système binaire. Sirius A, celle que nous voyons, est une étoile de type A de la séquence principale, tandis que son compagnon invisible Sirius B est une naine blanche. (Sirius B est aussi affectueusement appelé « le chiot » en raison du fait que Sirius A est historiquement connu sous le nom de « Dog Star ».)

Sirius B a été découvert le 31 janvier 1862 et a été reconnu comme naine blanche en 1915, seulement la deuxième à être découverte (après 40 Eridani B, comme relaté dans cet astrobite). Un an plus tard, en 1916, Einstein a publié sa théorie de la relativité générale, l'une de ses prédictions étant que la lumière quittant une étoile devrait être affectée par le décalage vers le rouge gravitationnel. (C'est là que la lumière sortant d'un puits gravitationnel perd de l'énergie et apparaît plus rouge.) En 1924, l'astronome Arthur Eddington réalisa que, puisque Sirius B était si petit et dense, il devrait montrer un redshift gravitationnel mesurable. Cela a été mesuré pour la première fois en 1925 par Walter Adams au mont. Observatoire Wilson et considéré comme un grand succès pour la Relativité Générale. (Bien que nous sachions maintenant que le décalage prédit et mesuré était environ quatre fois trop faible, il est supposé que les spectres de Sirius B pourraient avoir été contaminés par la lumière de Sirius A qui est très proche dans le ciel.)

En mesurant le décalage vers le rouge gravitationnel d'une étoile de rayon connu, nous pouvons également mesurer sa masse, car pour un objet stellaire typique (c'est-à-dire pas une étoile à neutrons ou un trou noir), le décalage vers le rouge gravitationnel ne dépend que de ces deux quantités. Nous pouvons très bien mesurer la distance à Sirius B en utilisant sa parallaxe puisqu'il est si proche, et en mesurant sa luminosité (basée sur sa luminosité et sa température), nous pouvons calculer son rayon. Nous pouvons également mesurer sa masse de manière dynamique, en observant comment lui et Sirius A orbitent autour de leur centre de masse commun et en appliquant les lois de Kepler sur le mouvement orbital, mais il y a un petit problème : les estimations de la masse de Sirius B basées sur les mesures de sa force gravitationnelle Le décalage vers le rouge a historiquement différé d'environ 10 % de sa masse mesurée dynamiquement (pour être clair, cela provient de nouvelles mesures prises après que celles d'origine se soient avérées fausses).

Pour dissiper cette confusion de longue date, les auteurs de l'article d'aujourd'hui ont utilisé le télescope spatial Hubble pour prendre des spectres de Sirius A et B afin d'effectuer une mesure différentielle des redshifts gravitationnels des deux. La mesure différentielle est un outil utile car elle permet d'éliminer de nombreuses erreurs systématiques pouvant être présentes dans un instrument, car toutes celles qui existent affecteront toutes les observations de la même manière. Le décalage vers le rouge gravitationnel de Sirius A est mieux connu que celui de Sirius B, donc en mesurant les deux, en trouvant la différence entre eux et en corrigeant la valeur connue du décalage vers le rouge de Sirius A, il est possible de faire une mesure plus précise et plus précise de le décalage vers le rouge gravitationnel de Sirius B que cela ne serait possible en l'observant seul.

Hubble, Hubble, labeur et ennuis

Le décalage vers le rouge gravitationnel, même pour une naine blanche comme Sirius B, n'est pas un effet très important. Dans des travaux antérieurs, le décalage vers le rouge gravitationnel pour Sirius B était estimé à 83 ± 3 km/s. A la longueur d'onde de l'hydrogène alpha (Hα) que les auteurs ont utilisée pour mesurer le décalage vers le rouge, cela correspond à un décalage de longueur d'onde de seulement 1,81 ångströms (Å, 1×10 -10 m) . La figure 1 montre les quatre spectres de Sirius B acquis par le HST, montrant à quel point un tel décalage est petit.

Figure 1: Les quatre spectres de Sirius B pris par le télescope spatial Hubble pour cet article, centrés sur la raie hydrogène alpha (Hα) que les auteurs ont utilisée pour mesurer le décalage vers le rouge. Les spectres ont tous été normalisés en continu et sont représentés décalés de 0,5 verticalement pour plus de clarté. Notez l'échelle en sur l'axe horizontal. Figure 2 dans le document.

Figure 2: La vitesse du télescope spatial Hubble par rapport au centre de masse du système binaire Sirius en fonction du temps au cours de la période de temps où les observations utilisées dans l'article d'aujourd'hui ont été prises. Les cercles bleus sont les spectres de Sirius B, les étoiles vertes de Sirius A. Figure 5 dans le document.

La mesure du décalage vers le rouge de Sirius B a nécessité beaucoup de comptabilité de vitesse pour les auteurs : ils devaient tenir compte de la vitesse du HST autour de la Terre (comme le montre la figure 2), de la vitesse de la Terre autour du centre de masse du système solaire, et les vitesses de Sirius A et B autour leur centre de masse commun. Après avoir corrigé tout cela, ils ont pu obtenir une mesure de la différence de décalage vers le rouge entre Sirius A et B. En corrigeant la valeur (précédemment calculée) du décalage vers le rouge gravitationnel de Sirius A de 0,759 km/s et en la comparant avec la décalage vers le rouge différentiel qu'ils ont trouvé pour Sirius B, les auteurs ont pu obtenir une valeur absolue du décalage vers le rouge gravitationnel pour Sirius B de 80,65 ± 0,77 km/s.

Ce redshift mesuré a ensuite été utilisé pour calculer la masse de Sirius B à l'aide d'un modèle simple. La valeur de 1,017 ± 0,025 masses solaires de ce calcul correspond presque exactement à la valeur obtenue par des méthodes dynamiques — 1,018 ± 0,011 masses solaires. Et en combinant la masse de Sirius B avec son rayon, les auteurs ont pu montrer qu'il correspond bien à nos modèles de ce qu'on appelle la relation masse-rayon pour les naines blanches, comme le montre la figure 3.

Figure 3: Cela montre où Sirius B se situe sur la relation masse-rayon pour les naines blanches. Les différentes couleurs correspondent à différentes températures, la ligne verte correspond à la température qui correspond le mieux à Sirius B, 25 922 K. Les lignes pleines et pointillées indiquent si la naine blanche a une couche épaisse ou mince d'hydrogène autour de son noyau. Figure 11 dans le document.

Mesurer les masses des naines blanches à l'aide de leurs décalages vers le rouge est un outil utile pour les astronomes car il est possible de le faire avec seulement quelques spectres, alors que la méthode dynamique peut prendre des années et ne fonctionne que pour des étoiles relativement proches. En effectuant ce test différentiel avec notre naine blanche voisine la plus proche, les auteurs ont également pu trouver et souligner quelques petits effets systématiques avec le spectrographe du télescope spatial Hubble qui seront probablement utiles à d'autres personnes effectuant des mesures de spectroscopie similaires sur d'autres naines blanches. qui n'ont pas d'étoiles de référence à proximité aussi pratiques.


Question sur la vitesse de récession (redshift)

J'ai une assez bonne compréhension de la vitesse de récession et de son lien avec le décalage vers le rouge, mais j'ai eu une question lors d'une récente soirée d'étoiles à laquelle j'ai donné une conférence où quelqu'un a demandé si la vitesse de récession entre les galaxies lointaines était additive.

Vous avez deux voitures dos à dos. L'une des voitures accélère à 1 mile par heure par seconde. L'autre voiture reste sur place. Après 10 secondes, chaque voiture verrait l'autre " reculer " à 10 mph. Après 20 secondes 20 mph et ainsi de suite.

Redémarrez l'expérience et demandez aux deux voitures d'accélérer l'une par rapport à l'autre au même taux de 1 mph/sec. Après 10 secondes, la vitesse de récession est-elle toujours à 10 mph ou à 20 mph puisque maintenant les deux voitures se déplacent ? Est-ce que deux galaxies lointaines se déplaçant dans des directions opposées se comportent de la même manière ? Ou sont-ils comme deux points sur un disque en rotation, un près du moyeu et un près du bord, chaque point va à 33 1/3 tr/min mais la vitesse de chacun est différente.

J'ai trouvé des articles qui abordent ce sujet, mais je ne comprends pas tout à fait le calcul.

Rien d'important à cheval sur la réponse, juste curieux !

#2 Tony Flandre

La réponse simple et rapide est : Non, les vitesses ne sont jamais additives. Si la voiture A s'éloigne de vous à 10 mph et que la voiture B s'éloigne de la voiture A à 10 mph, alors la voiture B s'éloigne de vous à un peu moins de 20 mph.

Si ce n'était pas vrai, une longue série de voitures verrait la dernière voiture s'éloigner de vous plus vite que la vitesse de la lumière, ce qui est impossible.

Pour un mouvement uniforme, le calcul est très simple : la somme de deux vitesses, v1 et v2 est (v1 + v2) / (1 + v1 * v2 / c ** 2), où c est la vitesse de la lumière.

Mais ce que vous demandez est un mouvement non uniforme, et la réponse devient alors beaucoup plus difficile à formuler. Étant donné que le mouvement change avec le temps, vous devez spécifier une heure à laquelle le mouvement est mesuré. Et le problème est que pour deux objets à une distance substantielle, et s'éloignant l'un de l'autre à une fraction substantielle de la vitesse de la lumière, le concept de "en même temps" pour ces deux objets dépend de votre cadre de référence.

Les maths ne sont pas du tout à l'est.

#3 HockeyGuy

Le décalage vers le rouge observé dans les galaxies en recul est dû à l'expansion de l'espace-temps. L'espace-temps entre les galaxies est en expansion et l'expansion de l'univers s'accélère, ce qui signifie que notre univers observable est limité. Les galaxies qui sont liées gravitationnellement les unes aux autres, telles que les galaxies en amas ou en groupes comme notre propre groupe local, ne s'éloignent pas les unes des autres car notre espace-temps ne s'étend pas.

Je ne sais pas si je réponds directement à votre question, mais tout ce que nous mesurons est relatif. Nous semblons être au centre de l'univers car lorsque nous regardons dans toutes les directions, tout le reste s'étend loin de nous, mais nous ne sommes pas si spéciaux. N'importe quel observateur n'importe où dans l'univers serait témoin des mêmes phénomènes.

#4 HarryRik9

Je ne sais pas quelle est votre question, et je suppose que vous ne l'êtes pas non plus. La réclamation formulée est la suivante. Par le principe cosmologique, qui affirme qu'il n'y a rien de privilégié concernant ce que nous observons sur la terre, alors tout le monde dans chaque galaxie voit la même chose que tout le monde. Donc, si nous observons sur terre que chaque galaxie s'éloigne de nous radialement avec une vitesse croissante en fonction de la distance, alors selon le principe cosmologique, tout autre observateur, peu importe où il se trouve, voit la même chose que nous.

Donc, en suivant votre exemple, s'il y a deux voitures, ce qui est vu par rapport à la voiture 1 est le même que vu par rapport à la voiture deux.

Quant à savoir si cela a du sens ou non, c'est une toute autre question. Vous demandez-vous si cette affirmation a un sens en termes de mathématiques et de physique ? Eh bien, l'implication est que l'espace doit être en 4 dimensions et non en 3 dimensions. C'est parce qu'il doit y avoir un centre d'expansion. Maintenant, si nous utilisons l'analogie de l'expansion du ballon, nous avons alors que la surface bidimensionnelle du ballon sphérique s'étend de sorte que chaque point s'étend de manière équivalente les uns des autres et réponde aux exigences du principe cosmologique. Cela signifie que l'espace est en 3 dimensions mais que la surface en expansion n'est qu'en 2 dimensions. Vous avez donc besoin de la dimension supplémentaire de l'espace pour que les deux autres dimensions puissent s'étendre de la manière requise.

Mais l'espace réel dans lequel nous vivons est en 3 dimensions, ce qui signifie que pour répondre à l'exigence, il doit y avoir une quatrième dimension où se trouve le centre d'expansion. Cela signifie donc que l'espace est en quatre dimensions si vous croyez à la théorie qu'ils promeuvent.

#5 Starman1

Je ne suis pas sûr de comprendre votre question à cause de la façon dont elle a été posée, mais :

--Les galaxies ont deux mouvements : local et cosmologique.

Le mouvement local peut être vers nous, latéral ou éloigné de nous.

Quelle que soit la distance, ces mouvements sont susceptibles d'être faibles.

Néanmoins, ce n'est qu'en mesurant les vitesses de récession d'un grand groupe de galaxies d'environ la même taille et la même luminosité dans la même partie du ciel

que nous pouvons nous faire une opinion sur les vitesses de récession de ces galaxies. Après tout, on pourrait venir vers nous et montrer une vitesse de récession plus lente,

tandis qu'un autre pourrait s'éloigner de nous et semble avoir une vitesse de récession plus élevée. Mesurez un millier de galaxies regroupées, cependant, et vous

avoir une idée de ce qui est de récession et de ce qui est local.

Les galaxies proches (par exemple M31) ont également une vitesse de récession mais elle est très très petite par rapport à la vitesse locale (qui est de 300km/sec vers nous).

Premièrement, il est important de comprendre que le mouvement cosmologique des galaxies n'est pas causé par un mouvement local - il est causé par l'expansion de la grille tridimensionnelle de l'univers,

Cette grille est en expansion et les galaxies peuvent même être stationnaires dans la grille et semblent toujours s'éloigner de nous à grande vitesse.

Cela étant, plus la galaxie est éloignée, plus elle semblera s'éloigner rapidement de nous.

Deuxièmement, il est également important de réaliser que peu importe la direction dans laquelle nous regardons, plus une galaxie est éloignée, plus elle semblera s'éloigner rapidement. Nous semblons être au centre de l'univers.

La même chose est vraie pour chaque point de l'univers - plus la galaxie est éloignée, plus elle semblera s'éloigner rapidement. Chaque point de l'univers est le centre de l'univers pour ce point.

Nous voyons une galaxie reculer à 10% de la vitesse de la lumière alors que nous sommes stationnaires tandis que quelqu'un dans cette galaxie nous verrait reculer à 10% de la vitesse de la lumière alors qu'ils sont stationnaires.

C'est donc avec le temps de « regard en arrière ». Plus un objet est loin, plus il a fallu de temps à sa lumière pour arriver ici. Le seul point de "MAINTENANT" est ici et alors que nous regardons dans l'univers, nous regardons en arrière dans le temps. C'est pourquoi le "point" au début de l'univers semble être une sphère autour de nous. Nous regardons le même "point" quelle que soit la direction dans laquelle nous regardons, car plus nous regardons loin dans n'importe quelle direction, plus la lumière que nous voyons est ancienne. Et cela est vrai de chaque point de l'univers. À un point dans l'espace à une distance d'un milliard d'années-lumière, "MAINTENANT" est juste à ce moment-là et ils nous voient tels que nous étions il y a longtemps lorsque la lumière que nous avons émise a continué son chemin et y est finalement arrivée.

C'est pourquoi parler de l'univers tel qu'il est maintenant n'a aucun sens. Il y a un nombre infini de maintenant, et la vitesse de la lumière nous empêche à jamais de voir comment l'univers est "MAINTENANT". Seul chaque point de l'univers peut voir son propre "maintenant".

Maintenant, on peut parler de deux particules accélérées dans des directions opposées à 75 % de la vitesse de la lumière à partir d'un point stationnaire. S'éloignent-ils l'un de l'autre de 1,5 fois la vitesse de la lumière ?

Selon la relativité, deux objets ne peuvent pas s'éloigner l'un de l'autre à une vitesse supérieure à la vitesse de la lumière. une façon de penser est que pour que deux particules ayant une masse s'éloignent l'une de l'autre à la vitesse de la lumière, il faut une énergie infinie, qui n'existe pas dans l'univers. Si vous ajoutez les énergies dont chaque particule a pour s'éloigner d'un point à 75 % de la vitesse de la lumière, l'énergie totale est loin de l'énergie dont elles auraient besoin pour s'éloigner l'une de l'autre à la vitesse de la lumière. Je vous suggère de lire un livre sur la relativité pour trouver l'équation qui vous permet de déterminer à quelle vitesse chaque particule recule du point de vue de l'autre.

Mais le cadre de l'univers n'a pas une telle limitation. Même si l'univers ne s'étend pas rapidement, plus un objet est éloigné, plus il semblera s'éloigner rapidement de nous.

À une certaine distance, le cadre s'étendra plus vite que la vitesse de la lumière et la lumière émise par un objet assis là ne nous atteindra jamais car l'objet recule plus vite que la lumière ne peut nous atteindre.

Cela signifie qu'il existe un "horizon" pour chaque point de l'univers, au-delà duquel nous ne pouvons pas voir. Par rapport au cadre de l'univers, ces objets ne s'éloignent pas de nous plus vite que la lumière. Ils pourraient être immobiles par rapport au cadre et pourtant nous ne les verrions toujours pas.

Ainsi, la vitesse de récession n'est pas une vitesse liée au mouvement de l'objet par rapport à son utilisation si nous supposons un référentiel stationnaire par rapport à l'univers. C'est une vitesse relative. Pourtant, les effets sont les mêmes que s'il s'éloignait de nous à ces vitesses, entraînant un décalage vers le rouge des longueurs d'onde lumineuses. C'est Hubble qui a compris ce que signifiaient les décalages vers le rouge sur toutes les galaxies lointaines.

J'espère que cela clarifie un peu les choses, conceptuellement.

Édité par Starman1, 21 janvier 2017 - 17:34.

#6 GlennLeDrew

Pour vous, l'observateur stationnaire :

La voiture A roule N à 10 mph. Pour vous, il recule à 10 mph.

La voiture B, un peu plus loin vers le N que la voiture B et se dirigeant dans la même direction (N), roule à 10 mph *par rapport* à la voiture A.

La voiture B s'éloigne donc de vous à 20 mph.

De la voiture A, le conducteur vous verra reculer vers le S à 10 mph et la voiture B reculer vers le N à 10 mph.

Le facteur clé pour résoudre ce problème sans ambiguïté est le cadre de référence utilisé pour le ou les mouvements. Dans le message d'ouverture, il n'a pas été précisé si les vitesses étaient par rapport à un cadre de référence commun, ou plutôt par rapport à chaque particulier ( déplacement) point d'observation.

#7 HarryRik9

Pour vous, l'observateur stationnaire :

La voiture A roule N à 10 mph. Pour vous, il recule à 10 mph.

La voiture B, un peu plus loin vers le N que la voiture B et se dirigeant dans la même direction (N), roule à 10 mph *par rapport* à la voiture A.

La voiture B s'éloigne donc de vous à 20 mph.

De la voiture A, le conducteur vous verra reculer vers le S à 10 mph et la voiture B reculer vers le N à 10 mph.

Le facteur clé pour résoudre ce problème sans ambiguïté est le cadre de référence utilisé pour le ou les mouvements. Dans le message d'ouverture, il n'a pas été précisé si les vitesses étaient par rapport à un cadre de référence commun, ou plutôt par rapport à chaque particulier ( déplacement) point d'observation.

Glenn, après avoir lu ceci, je pense que la question est mal posée. L'exemple des voitures en mouvement est une mauvaise interprétation de la situation. Les galaxies ne bougent pas par rapport à l'espace, elles restent dans des endroits fixes et l'espace entre elles se dilate de telle sorte qu'entre deux points quelconques de l'espace, la distance est censée augmenter. Il n'y a en fait aucune motion. Le mouvement, si c'est le terme correct à utiliser, est causé par l'expansion de l'espace et le décalage vers le rouge n'est pas causé par le décalage Doppler dû au mouvement mais par l'augmentation de la longueur d'onde à mesure que l'espace s'étend ou se dilate le long du trajet de l'onde lumineuse.

#8 Alex McConahay

La confusion vient du cadrage original de votre expérience gedanken.

>>>>>Vous avez deux voitures dos à dos. L'une des voitures accélère à 1 mile par heure par seconde. L'autre voiture reste sur place.
>>>>>Redémarrez l'expérience et demandez aux deux voitures d'accélérer l'une par rapport à l'autre à la même vitesse de 1 mph/sec.

La façon dont vous l'énoncez, vous avez deux cas ici. Mais en fait, votre deuxième instance est identique à la première. Il aurait dû être indiqué ainsi :

". Redémarrez l'expérience et demandez aux deux voitures d'accélérer en s'éloignant de l'un l'autre UN POINT FIXE DANS L'ESPACE le même taux de 1 mph/sec. "

Dans votre premier cas, la voiture A est apparemment le point de référence fixe. Et la voiture B accélère. Mais, vraiment, si vous considérez la voiture B comme la référence fixe, alors la voiture A accélère en s'éloignant (de la voiture B) à la vitesse précédemment attribuée à la voiture B. (Rappelez-vous, tout est relatif au cadre de référence.) Donc, pour un observateur extérieur, chaque voiture accélère en s'éloignant de l'autre à une vitesse de une moitié que 1 mph/sec. Ou, une voiture accélère en s'éloignant d'un point fixe (l'autre voiture) à pleine vitesse de 1 mph/sec.

Regardez à nouveau comment j'ai reformulé votre deuxième instance. Cela en fait ce que vous pensée tu disais. Vous vouliez que votre deuxième instance ait les deux voitures accélérant à partir d'un point fixe.

#9 Maurice

Je ne sais pas quelle est votre question, et je suppose que vous ne l'êtes pas non plus. La réclamation formulée est la suivante. Par le principe cosmologique, qui affirme qu'il n'y a rien de privilégié concernant ce que nous observons sur la terre, alors tout le monde dans chaque galaxie voit la même chose que tout le monde. Donc, si nous observons sur terre que chaque galaxie s'éloigne de nous radialement avec une vitesse croissante en fonction de la distance, alors selon le principe cosmologique, tout autre observateur, peu importe où il se trouve, voit la même chose que nous.

Donc, en suivant votre exemple, s'il y a deux voitures, ce qui est vu par rapport à la voiture 1 est le même que vu par rapport à la voiture deux.

Quant à savoir si cela a du sens ou non, c'est une toute autre question. Vous demandez-vous si cette affirmation a un sens en termes de mathématiques et de physique ? Eh bien, l'implication est que l'espace doit être en 4 dimensions et non en 3 dimensions. C'est parce qu'il doit y avoir un centre d'expansion. Maintenant, si nous utilisons l'analogie de l'expansion du ballon, nous avons alors que la surface bidimensionnelle du ballon sphérique s'étend de sorte que chaque point s'étend de manière équivalente les uns des autres et réponde aux exigences du principe cosmologique. Cela signifie que l'espace est en 3 dimensions mais que la surface en expansion n'est qu'en 2 dimensions. Vous avez donc besoin de la dimension supplémentaire de l'espace pour que les deux autres dimensions puissent s'étendre de la manière requise.

Mais l'espace réel dans lequel nous vivons est en 3 dimensions, ce qui signifie que pour répondre à l'exigence, il doit y avoir une quatrième dimension où se trouve le centre d'expansion. Cela signifie donc que l'espace est en quatre dimensions si vous croyez à la théorie qu'ils promeuvent.

La quatrième dimension est le temps et le centre d'expansion est le "big bang" à partir duquel le "temps" commence à commencer. BTW, l'analogie "en expansion de ballon" est trompeuse en soi parce que les "points de galaxie" à la surface grossiront lorsque le ballon sera gonflé, comme cela a été noté.

#10 Starman1

À long terme, les points s'agrandiront, puis les étoiles à l'intérieur d'eux, puis les atomes et les particules, et tout sera déchiré jusqu'à ce que l'univers soit infiniment grand.

avec aucune matière et si peu d'énergie par mètre cube, tout sera essentiellement le zéro absolu.

Mais ce temps est si loin dans le futur que toutes les étoiles seront déjà mortes.

#11 Maurice

À long terme, les points s'agrandiront, puis les étoiles à l'intérieur, puis les atomes et les particules et tout sera déchiré jusqu'à ce que l'univers soit infiniment grand.

avec aucune matière et si peu d'énergie par mètre cube, tout sera essentiellement le zéro absolu.

Mais ce temps est si loin dans le futur que toutes les étoiles seront déjà mortes.

Droite. Maintenant je m'interroge sur la fin de la soi-disant "matière noire" dans ce concours, mais c'est une autre question.

#12 Classique8

La confusion vient du cadrage original de votre expérience gedanken.

>>>>>Vous avez deux voitures dos à dos. L'une des voitures accélère à 1 mile par heure par seconde. L'autre voiture reste sur place.
>>>>>Redémarrez l'expérience et demandez aux deux voitures d'accélérer l'une par rapport à l'autre au même taux de 1 mph/sec.

La façon dont vous l'énoncez, vous avez deux cas ici. Mais en fait, votre deuxième instance est identique à la première. Il aurait dû être indiqué ainsi :

". Redémarrez l'expérience et demandez aux deux voitures d'accélérer en s'éloignant de l'un l'autre UN POINT FIXE DANS L'ESPACE le même taux de 1 mph/sec. "

Dans votre premier cas, la voiture A est apparemment le point de référence fixe. Et la voiture B accélère. Mais, vraiment, si vous considérez la voiture B comme la référence fixe, alors la voiture A accélère en s'éloignant (de la voiture B) à la vitesse précédemment attribuée à la voiture B. (Rappelez-vous, tout est relatif au cadre de référence.) Donc, pour un observateur extérieur, chaque voiture accélère en s'éloignant de l'autre à une vitesse de une moitié que 1 mph/sec. Ou bien, une voiture accélère en s'éloignant d'un point fixe (l'autre voiture) à pleine vitesse de 1 mph/sec.

Regardez à nouveau comment j'ai reformulé votre deuxième instance. Cela en fait ce que vous pensée tu disais. Vous vouliez que votre deuxième instance ait les deux voitures accélérant à partir d'un point fixe.

Ce sont mes deux centimes.

Alexis

Je pense que la question initiale portait sur les voitures qui s'éloignaient les unes des autres. S'ils s'éloignent tous les deux d'un point fixe dans l'espace, il faudrait également préciser qu'ils se déplacent dans des directions opposées, sinon ce pourrait être une situation différente de ce qu'ils proposaient.

#13 HarryRik9

Je ne sais pas quelle est votre question, et je suppose que vous ne l'êtes pas non plus. La réclamation formulée est la suivante. Par le principe cosmologique, qui affirme qu'il n'y a rien de privilégié concernant ce que nous observons sur la terre, alors tout le monde dans chaque galaxie voit la même chose que tout le monde. Donc, si nous observons sur terre que chaque galaxie s'éloigne de nous radialement avec une vitesse croissante en fonction de la distance, alors selon le principe cosmologique, tout autre observateur, peu importe où il se trouve, voit la même chose que nous.

Donc, en suivant votre exemple, s'il y a deux voitures, ce qui est vu par rapport à la voiture 1 est le même que vu par rapport à la voiture deux.

Quant à savoir si cela a du sens ou non, c'est une toute autre question. Vous demandez-vous si cette affirmation a un sens en termes de mathématiques et de physique ? Eh bien, l'implication est que l'espace doit être en 4 dimensions et non en 3 dimensions. C'est parce qu'il doit y avoir un centre d'expansion. Maintenant, si nous utilisons l'analogie de l'expansion du ballon, nous avons alors que la surface bidimensionnelle du ballon sphérique s'étend de sorte que chaque point s'étend de manière équivalente les uns des autres et réponde aux exigences du principe cosmologique. Cela signifie que l'espace est en 3 dimensions mais que la surface en expansion n'est qu'en 2 dimensions. Vous avez donc besoin de la dimension supplémentaire de l'espace pour que les deux autres dimensions puissent s'étendre de la manière requise.

Mais l'espace réel dans lequel nous vivons est en 3 dimensions, ce qui signifie que pour répondre à l'exigence, il doit y avoir une quatrième dimension où se trouve le centre d'expansion. Cela signifie donc que l'espace est en quatre dimensions si vous croyez à la théorie qu'ils promeuvent.

La quatrième dimension est le temps et le centre d'expansion est le "big bang" à partir duquel le "temps" commence à commencer. BTW, l'analogie "en expansion de ballon" est trompeuse en soi parce que les "points de galaxie" à la surface grossiront lorsque le ballon sera gonflé, comme cela a été noté.

Je ne sais pas comment le temps devient la quatrième dimension de l'espace. J'aimerais bien que vous m'expliquiez pourquoi vous pensez que ce que vous avez dit ici a du sens.

#14 Alex McConahay

>>>>>>Je pense que la question initiale portait sur les voitures qui s'éloignaient les unes des autres. S'ils s'éloignent tous les deux d'un point fixe dans l'espace, il faudrait également préciser qu'ils se déplacent dans des directions opposées, sinon ce pourrait être une situation différente de ce qu'ils proposaient.

Oui, je suppose aussi dans des directions opposées. Mais ce que je veux dire, c'est que tout est relatif au cadre de référence.

Dans la publication d'origine, dans l'instance 1, si le cadre de référence est un point dans l'espace et que ce point se trouve être la voiture A, alors la première instance a la voiture B accélérant à partir de ce point à 1 mph/sec. Bien sûr, si vous considérez que le point dans l'espace est la voiture B, alors la voiture A accélère depuis la voiture B à 1 mph/sec.

Dans la publication d'origine, dans l'exemple 2, si le cadre de référence est un point dans l'espace et que ce point se trouve être UN POINT FIXE DANS L'ESPACE, alors la voiture A et la voiture B accélèrent (dans des directions opposées) à partir de ce point à 1 mph/sec CHACUN. Ainsi, ils accélèrent l'un de l'autre à 2 mph/s. Cela reviendrait à dire que B accélère de A à 2 mph/sec et A accélère de B à 2 mph/sec.

#15 Starman1

>>>>>>Je pense que la question initiale portait sur les voitures qui s'éloignaient les unes des autres. S'ils s'éloignent tous les deux d'un point fixe dans l'espace, il faudrait également préciser qu'ils se déplacent dans des directions opposées, sinon ce pourrait être une situation différente de ce qu'ils proposaient.

Oui, je suppose aussi dans des directions opposées. Mais ce que je veux dire, c'est que tout est relatif au cadre de référence.

Dans la publication d'origine, dans l'instance 1, si le cadre de référence est un point dans l'espace et que ce point se trouve être la voiture A, alors la première instance a la voiture B accélérant à partir de ce point à 1 mph/sec. Bien sûr, si vous considérez que le point dans l'espace est la voiture B, alors la voiture A accélère depuis la voiture B à 1 mph/sec.

Dans la publication d'origine, dans l'exemple 2, si le cadre de référence est un point dans l'espace et que ce point se trouve être UN POINT FIXE DANS L'ESPACE, alors la voiture A et la voiture B accélèrent (dans des directions opposées) à partir de ce point à 1 mph/sec CHACUN. Ainsi, ils accélèrent l'un de l'autre à 2 mph/s. Cela reviendrait à dire que B accélère de A à 2 mph/sec et A accélère de B à 2 mph/sec.

Alexis

Cela fonctionne à des vitesses lentes, mais, contrairement à l'addition, cela ne fonctionne pas à des vitesses relativistes. Deux objets ne peuvent pas s'éloigner l'un de l'autre à la vitesse de la lumière.

#16 Alex McConahay

>>>>>>>Cela fonctionne à des vitesses lentes, mais, contrairement à l'addition, cela ne fonctionne pas à des vitesses relativistes. Deux objets ne peuvent pas s'éloigner l'un de l'autre à la vitesse de la lumière.

Peut-être pas à des vitesses relativistes, mais pourquoi nous limitons-nous à des vitesses relativistes. (Eh bien, outre le fait que nous parlons de deux voitures. Imaginons plutôt deux galaxies.) Rappelez-vous, l'affiche originale parlait de décalage cosmique vers le rouge, dont l'accélération est causée par l'expansion du cadre.

>>>>>>>À une certaine distance, le cadre s'étendra plus vite que la vitesse de la lumière et la lumière émise par un objet assis là ne nous atteindra jamais car l'objet recule plus vite que la lumière ne peut nous atteindre.
Cela signifie qu'il existe un "horizon" pour chaque point de l'univers, au-delà duquel nous ne pouvons pas voir. Par rapport au cadre de l'univers, ces objets ne s'éloignent pas de nous plus vite que la lumière. Ils pourraient être immobiles par rapport au cadre et pourtant nous ne les verrions toujours pas.

Pourquoi cette situation ne s'applique-t-elle pas à nos voitures galactiques ? (Non, pas le Ford Galaxy des années 60.)

#17 Classique8

>>>>>>Je pense que la question initiale portait sur les voitures qui s'éloignaient les unes des autres. S'ils s'éloignent tous les deux d'un point fixe dans l'espace, il faudrait également préciser qu'ils se déplacent dans des directions opposées, sinon ce pourrait être une situation différente de ce qu'ils proposaient.

Oui, je suppose aussi dans des directions opposées. Mais ce que je veux dire, c'est que tout est relatif au cadre de référence.

Dans la publication d'origine, dans l'instance 1, si le cadre de référence est un point dans l'espace et que ce point se trouve être la voiture A, alors la première instance a la voiture B accélérant à partir de ce point à 1 mph/sec. Bien sûr, si vous considérez que le point dans l'espace est la voiture B, alors la voiture A accélère depuis la voiture B à 1 mph/sec.

Dans la publication d'origine, dans l'exemple 2, si le cadre de référence est un point dans l'espace et que ce point se trouve être UN POINT FIXE DANS L'ESPACE, alors la voiture A et la voiture B accélèrent (dans des directions opposées) à partir de ce point à 1 mph/sec CHACUN. Ainsi, ils accélèrent l'un de l'autre à 2 mph/s. Cela reviendrait à dire que B accélère de A à 2 mph/sec et A accélère de B à 2 mph/sec.

Alexis

Ouais, ça a du sens. Et je dirais que cela fonctionne également à des vitesses relativistes, sauf qu'évidemment aucune voiture ne pouvait aller à la vitesse de la lumière.

#18 Starman1

Salut Don,

>>>>>>>Cela fonctionne à des vitesses lentes, mais, contrairement à l'addition, cela ne fonctionne pas à des vitesses relativistes. Deux objets ne peuvent pas s'éloigner l'un de l'autre à la vitesse de la lumière.

Peut-être pas à des vitesses relativistes, mais pourquoi nous limitons-nous à des vitesses relativistes. (Eh bien, outre le fait que nous parlons de deux voitures. Imaginons plutôt deux galaxies.) Rappelez-vous, l'affiche originale parlait de décalage cosmique vers le rouge, dont l'accélération est causée par l'expansion du cadre.

Plus tôt tu disais :

>>>>>>>À une certaine distance, le cadre s'étendra plus vite que la vitesse de la lumière et la lumière émise par un objet assis là ne nous atteindra jamais car l'objet recule plus vite que la lumière ne peut nous atteindre.
Cela signifie qu'il existe un "horizon" pour chaque point de l'univers, au-delà duquel nous ne pouvons pas voir. Par rapport au cadre de l'univers, ces objets ne s'éloignent pas de nous plus vite que la lumière. Ils pourraient être immobiles par rapport au cadre et pourtant nous ne les verrions toujours pas.

Pourquoi cette situation ne s'applique-t-elle pas à nos voitures galactiques ? (Non, pas le Ford Galaxy des années 60.)

Alexis

Je suppose qu'ils pourraient être relativistes distances l'un de l'autre.

#19 Maurice

Le "ballon en expansion" est encadré dans ses coordonnées mobiles par une quantité dépendante du temps nommée "facteur d'échelle" (SF) pour un objet donné par rapport au facteur d'échelle à l'heure actuelle (SFP = 1) à partir de laquelle la "loi" de Hubble résulte du rapport SFP/(dSF/SF). SF est tiré du redshift observé z, et peut être ajouté au SFP actuel. Ainsi, en trouvant un quasars avec redshift z = 2 signifie que "ballon" s'est dilaté d'un facteur 3 [1/(1/1+2)] depuis que la lumière a quitté les quasars - trouver un quasar avec z = 4 signifie facteur 5 [1/(1/1+4 )] etc. Si nous inversons la "loi" de Hubble, nous trouvons le début de l'expansion, à savoir le "big bang". J'espère que cela a un sens général, car le PO parlait de ". quelqu'un a demandé si la vitesse de récession entre les galaxies lointaines est additive", tandis que "l'ajout" du facteur d'échelle actuel n'est pas clair s'il répond à la discussion de son parti vedette. Néanmoins, je dois avouer que je n'ai pas compris si :

.

Cela signifie donc que l'espace est en quatre dimensions si vous croyez en la théorie elles ou ils font la promotion.

était direct vers les cosmologues ou vers les gars à la fête des étoiles de l'OP.

Édité par Maurolico, le 22 janvier 2017 - 14:54.

#20 Keith Rivich

La question initiale que j'ai posée faisait partie d'une question posée par un visiteur de notre observatoire. Après avoir lu certaines des excellentes réponses, voici une question mieux formulée basée sur la question posée par notre visiteur :

Si une galaxie lointaine a une vitesse de récession de x, un observateur dans cette galaxie nous verrait alors à une vitesse de récession (RV) qui est également = à x. En supposant que cela soit correct, le camping-car que nous mesurons suppose-t-il que nous sommes un point fixe dans l'espace ou inclut-il notre moitié du contrat de camping-car ? Est-ce qu'il prend soin de lui-même dans les mathématiques? Je pense que c'est ce qu'il voulait dire par "additif" en ce sens que chaque galaxie contribue à la RV mesurée.

#21 Alex McConahay

Dans tous les contextes dont j'ai entendu parler, tout s'éloigne de tout (à l'échelle cosmologique - pas à l'échelle locale). Mais lorsque nous parlons de la vitesse à laquelle les choses s'éloignent de nous sur Terre, cela suppose que la Terre est au point zéro et que tout mouvement est attribué à l'autre objet. L'un des éléments de cette théorie est qu'un observateur est au centre du mouvement où que se trouve cet observateur. Donc tout s'éloigne de l'observateur (et l'observateur est considéré comme fixe).

#22 Starman1

Dans tous les contextes dont j'ai entendu parler, tout s'éloigne de tout (à l'échelle cosmologique - pas à l'échelle locale). Mais lorsque nous parlons de la vitesse à laquelle les choses s'éloignent de nous sur Terre, cela suppose que la Terre est au point zéro et que tout mouvement est attribué à l'autre objet. L'un des éléments de cette théorie est qu'un observateur est au centre du mouvement où que se trouve cet observateur. Donc tout s'éloigne de l'observateur (et l'observateur est considéré comme fixe).

Alexis

Exactement ce que j'ai dit plus tôt. CHAQUE point de l'univers est le centre parce que chaque point de l'univers est MAINTENANT et chaque direction qui s'en éloigne est dans le passé - plus la distance est grande, plus le temps de "retour en arrière" est long.

Lorsque nous regardons un objet à une distance de 6 milliards d'années-lumière, nous regardons cet objet tel qu'il était lorsqu'il a émis la lumière qui a mis des milliards d'années à nous atteindre.

Si vous pouviez vous transférer par magie sur cet objet où et tel qu'il est maintenant, et que vous nous regardiez, vous nous verriez tels que nous étions il y a des milliards d'années.

MAINTENANT, dans le sens très réel, n'est pas une condition de l'univers lorsque l'on regarde deux points de celui-ci.Le temps est complètement relatif à chaque point de l'univers.

Par conséquent, nous voyons un univers à travers une vaste distance ET un vaste temps. C'est la même chose pour chaque point de l'univers.

Édité par Starman1, 22 janvier 2017 - 17:11.

#23 HarryRik9

Vous avez reformulé la question comme suit : « est-ce que le VR que nous mesurons suppose que nous sommes un point fixe dans l'espace ou inclut-il notre moitié du contrat de VR ? » RV signifie vitesse radiale. Comme je l'ai déjà dit, il n'y a pas de vitesse radiale en soi. L'effet est censé être le résultat de l'expansion de l'espace entre deux points fixes dans l'espace, et le décalage vers le rouge, est censé être causé par l'expansion de l'espace de telle sorte que la longueur d'onde de la lumière s'allonge lorsqu'elle se déplace à travers l'espace en expansion. À mon avis, l'utilisation de la vitesse radiale est trompeuse et remonte à l'utilisation historique selon laquelle le décalage vers le rouge était dû à une vitesse de récession. Comme je l'ai dit plus haut, ce n'est pas ce que disent les livres de cosmologie qui provoque le décalage vers le rouge.

L'idée que chaque point s'éloigne de chaque autre point de l'espace, par paires, est une hypothèse. Il n'y a aucune preuve que cela soit vrai puisque le phénomène ne nous est connu que par les observations de la Terre. L'hypothèse est connue sous le nom de principe cosmologique et il en existe différentes versions. Les preuves récentes ne sont pas cohérentes avec le principe cosmologique puisque les études semblent montrer que l'univers peut être constitué de coquilles sphériques. Cela impliquerait que l'hypothèse est fausse.

L'expansion uniforme de l'espace par rapport à chaque point par paires présente un problème dans la conceptualisation de la façon dont cela pourrait être réel. Le concept explicatif habituel est de dire que l'espace est un ballon en expansion à deux dimensions, où la surface se dilate de sorte que chaque point s'éloigne par paires de chaque autre point. Comme je l'ai dit plus haut, cette analogie nécessite un espace à quatre dimensions pour qu'une "surface" à trois dimensions s'étende selon les besoins. L'autre façon est de dire que l'espace se dilate comme une cuisson de pain aux raisins. L'idée de faire du pain n'est pas très bonne car la cuisson du pain a des limites et l'univers n'est pas censé avoir de limites. Cela me dit que l'autre possibilité de visualisation est que l'univers est un espace euclidien infini qui se dilate ou se dilate également dans les trois dimensions et qu'il n'y a pas de frontières ou de limites de l'espace ou de son expansion.

Certains commentateurs ont essayé de dire que le temps étant la quatrième dimension explique l'expansion supposée de l'espace de la manière requise. Cela n'a pas de sens pour moi puisque le temps est un paramètre de l'expansion. Je suis ouvert aux opinions à ce sujet, mais cela n'a pas de sens pour moi à ce moment-là, car la quatrième dimension permet à l'expansion d'être uniforme par paires en fonction du temps.

#24 drôle

La réponse simple et rapide est : Non, les vitesses ne sont jamais additives. Si la voiture A s'éloigne de vous à 10 mph et que la voiture B s'éloigne de la voiture A à 10 mph, alors la voiture B s'éloigne de vous à un peu moins de 20 mph.

Si ce n'était pas vrai, une longue série de voitures verrait la dernière voiture s'éloigner de vous plus vite que la vitesse de la lumière, ce qui est impossible.

Pour un mouvement uniforme, le calcul est très simple : la somme de deux vitesses, v1 et v2 est (v1 + v2) / (1 + v1 * v2 / c ** 2), où c est la vitesse de la lumière.

Mais ce que vous demandez est un mouvement non uniforme, et la réponse devient alors beaucoup plus difficile à formuler. Étant donné que le mouvement change avec le temps, vous devez spécifier une heure à laquelle le mouvement est mesuré. Et le problème est que pour deux objets à une distance substantielle, et s'éloignant l'un de l'autre à une fraction substantielle de la vitesse de la lumière, le concept de "en même temps" pour ces deux objets dépend de votre cadre de référence.

Les maths ne sont pas du tout à l'est.

Je ne pense pas que ce raisonnement soit correct, et il repose sur un énoncé incorrect du problème (les voitures accélèrent).

ce qui se passe, c'est que l'espace lui-même s'étend, les objets dans l'espace restant en place. le mouvement relatif des objets n'a donc rien à voir avec les définitions normales de la vitesse, puisqu'en fait ils ne bougent pas : ils restent simplement où ils sont.

la raison invoquée pour laquelle l'expansion de l'espace ne produit pas également une expansion des objets, par exemple le diamètre du soleil, est que la gravité et les liaisons chimiques dans la matière sont localement beaucoup plus puissantes que l'"énergie noire" expansive dite, ainsi ils restent inchangés.

la métaphore courante pour ce processus est des points faits avec un marqueur sharpie sur un ballon non gonflé, qui est ensuite gonflé. la distance entre les points augmente, mais les points ne se déplacent pas sur la surface du ballon.

en fait, oui, il y a des galaxies dans l'univers, y compris des galaxies que nous pouvons voir dans l'imagerie en champ profond, qui s'éloignent actuellement les unes des autres à des vitesses dépassant la vitesse de la lumière. rien n'est violé ici, car les galaxies restent en place et il n'y a que l'espace qui s'étend. il n'y a pas d'accélération de masse, seulement une dilution spatiale.

Pour en revenir à l'imagerie des voitures, l'énoncé correct du problème physique serait celui-ci : il y a trois voitures garées en une ligne très espacée le long d'une autoroute rectiligne. le premier conducteur monte dans sa voiture et s'aperçoit qu'elle ne bouge pas car il n'a pas démarré son moteur. mais l'autoroute elle-même s'étend, alors il voit la deuxième voiture s'éloigner de lui à 10 mph, la troisième voiture s'éloigner à 20 mph. ajoutez des voitures, et vous pourrez éventuellement dépasser la vitesse de la lumière entre la première et la dernière voiture le long de l'autoroute en expansion.

#25 drôle

Keith,

Vous avez reformulé la question comme suit : « est-ce que le camping-car que nous mesurons suppose que nous sommes un point fixe dans l'espace ou comprend-il notre moitié du contrat de camping-car ? » RV signifie vitesse radiale. Comme je l'ai déjà dit, il n'y a pas de vitesse radiale en soi. L'effet est censé être le résultat de l'expansion de l'espace entre deux points fixes dans l'espace, et le décalage vers le rouge, est censé être causé par l'expansion de l'espace de telle sorte que la longueur d'onde de la lumière s'allonge lorsqu'elle se déplace à travers l'espace en expansion. À mon avis, l'utilisation de la vitesse radiale est trompeuse et remonte à l'utilisation historique selon laquelle le décalage vers le rouge était dû à une vitesse de récession. Comme je l'ai dit plus haut, ce n'est pas ce que disent les livres de cosmologie qui provoque le décalage vers le rouge.

L'idée que chaque point s'éloigne de chaque autre point de l'espace, par paires, est une hypothèse. Il n'y a aucune preuve que cela soit vrai puisque le phénomène ne nous est connu que par les observations de la Terre. L'hypothèse est connue sous le nom de principe cosmologique et il en existe différentes versions. Les preuves récentes ne sont pas cohérentes avec le principe cosmologique puisque les études semblent montrer que l'univers peut être constitué de coquilles sphériques. Cela impliquerait que l'hypothèse est fausse.

http://gsjournal.net. s/Télécharger/3621

L'expansion uniforme de l'espace par rapport à chaque point par paires présente un problème dans la conceptualisation de la façon dont cela pourrait être réel. Le concept explicatif habituel est de dire que l'espace est un ballon en expansion à deux dimensions, où la surface se dilate de sorte que chaque point s'éloigne par paires de chaque autre point. Comme je l'ai dit plus haut, cette analogie nécessite un espace à quatre dimensions pour qu'une "surface" à trois dimensions s'étende selon les besoins. L'autre façon est de dire que l'espace se dilate comme une cuisson de pain aux raisins. L'idée de faire du pain n'est pas très bonne car la cuisson du pain a des limites et l'univers n'est pas censé avoir de limites. Cela me dit que l'autre possibilité de visualisation est que l'univers est un espace euclidien infini qui se dilate ou se dilate également dans les trois dimensions et qu'il n'y a pas de frontières ou de limites de l'espace ou de son expansion.

Certains commentateurs ont essayé de dire que le temps étant la quatrième dimension explique l'expansion supposée de l'espace de la manière requise. Cela n'a pas de sens pour moi puisque le temps est un paramètre de l'expansion. Je suis ouvert aux opinions à ce sujet, mais cela n'a pas de sens pour moi à ce moment-là, car la quatrième dimension permet à l'expansion d'être uniforme par paires en fonction du temps.

ce n'est pas non plus tout à fait exact.

le "principe cosmologique" est simplement l'affirmation que l'espace se ressemble et que les lois physiques agissent de la même manière, quel que soit votre emplacement dans l'univers physique, à condition que votre échelle d'observation soit suffisamment large. ce principe a été remarquablement bien maintenu grâce à divers tests, dont par exemple la constance de la constante hyperfine, qui a été confirmée à grande distance. Le livre de Bill Keel sur l'évolution des galaxies est un excellent exposé de la logique de base et des preuves d'observation.

il est vrai que nos observations sont faites à partir de la terre, mais ce n'est pas une mise en accusation directe des conclusions que nous pouvons tirer : la science ne se limite pas aux observations mais inclut des inférences à partir des observations.

le fait que le décalage vers le rouge correspond parfaitement à une théorie cosmologique plus générale qui explique d'autres observations sans aucun rapport, telles que le fond diffus cosmologique et les proportions cosmologiques des éléments non métalliques, suggère qu'il ne s'agit pas d'une "simple hypothèse". Le livre d'Andrew Liddle sur la cosmologie, qui est à la fois basique et couvre beaucoup de terrain avec peu de mathématiques directes, serait une source utile pour les preuves disponibles.

l'idée que l'espace peut être infini est défendable, mais il est également possible que notre vue la plus vaste de l'univers soit encore trop petite pour révéler une courbure, tout comme la terre apparaît relativement plate à un observateur terrestre. cependant, dans le cadre de nos observations telles qu'elles sont actuellement interprétées, l'univers apparaît en effet "plat" (euclidien), infini et en expansion éternelle.

l'article que vous citez est un document non publié qui n'est même pas évalué par des pairs. (en effet, le site définit expressément sa mission comme « offrir une opportunité de présentation publique de théories scientifiques sans appréciation préalable et arbitraire, critique ou rejet par le destinataire. ») pour ma part, localisation d'un pôle d'expansion à seulement 70 mly de la terre (à un jet de pierre, d'un point de vue cosmologique) et décline avec 1/r^2, tout comme le biais malmquist le prédirait, n'est guère une réfutation mais au mieux un exercice élaboré d'ajustement de courbe.

c'est un point important : quels *processus physiques* ou *lois physiques* l'affirmation selon laquelle les galaxies s'étendent "dans l'espace réel" vous apporte-t-elle réellement ? les scientifiques ne s'intéressent pas seulement à expliquer les observations - n'importe quel enfant peut vous dire pourquoi le ciel est bleu ou pourquoi le père noël vient une fois par an. les scientifiques sont intéressés à expliquer les observations de manière à expliquer de nombreuses observations en même temps au moyen d'un principe plus profond. dans l'exemple, on peut supposer que l'article peut rejeter "l'énergie noire" en tant que caractéristique cosmologique, ce qui laisse alors un trou dans la masse calculée de l'univers, estimée à partir de différentes hypothèses, qui doit être comblé d'une autre manière.


L'ENQUÊTE CfA REDSHIFT

L'enquête CfA Redshift a été lancée en 1977 par Marc Davis, John Huchra, Dave Latham et John Tonry. Le premier levé CfA, achevé en 1982, (Huchra, Davis, Latham et Tonry, 1983, ApJS 52, 89) avait pour objectif la mesure des vitesses radiales pour toutes les galaxies plus lumineuses que 14,5 et à haute latitude galactique dans les catalogues fusionnés de Zwicky et Nilson (l'UGC). Cette étude produit les premières cartes à grande échelle et modérément profondes de la structure à grande échelle dans l'univers proche, ainsi que les premières mesures brutes mais véritablement quantitatives des propriétés de regroupement en 3D des galaxies. Les décalages vers le rouge sont le lien le plus simple pour déterminer les distances des galaxies. Une description du redshift est donnée ici LE REDSHIFT . Fondamentalement, puisque dans la plupart des endroits en dehors des noyaux des amas de galaxies ou dans l'univers très, très local (le groupe local de galaxies), l'expansion de l'univers, communément appelée le flux de Hubble, est fluide, le décalage vers le rouge est un substitut à la distance :

Distance = vitesse/(constante de Hubble) = V/H0

Ainsi, la mesure du décalage vers le rouge d'une galaxie vous donne une estimation de la distance de cette galaxie --- permettant ainsi aux astronomes de cartographier l'Univers voisin.

La deuxième enquête CfA (CfA2) a été lancée par John Huchra et Margaret Geller à l'hiver 1984/5. Entre 1985 et 1995, nous et nos étudiants et collègues avons mesuré les distances relatives via des décalages vers le rouge pour environ 18 000 galaxies brillantes dans le ciel du nord.

Les données de l'enquête CfA.

Cette carte initiale était assez surprenante, montrant que la distribution des galaxies dans l'espace était tout sauf aléatoire, les galaxies semblant en fait être distribuées sur des surfaces, presque comme des bulles, entourant de grandes régions vides, ou "vides". version postscript propre de cette figure ici. Si vous utilisez cette image ou toute autre image de ce site, veuillez créditer le Smithsonian Astrophysical Observatory et les auteurs appropriés.

Voici la carte avec six tranches contiguës de 6 degrés dans la calotte galactique nord. La structure s'étendant sur toute sa longueur entre 8 heures et 17 heures RA et 5 000 et 10 000 km/s est appelée la « Grande Muraille », peut-être la plus grande structure unique jamais détectée dans n'importe quel relevé de décalage vers le rouge. Ses dimensions sont d'environ 600x250x30 millions d'années-lumière, un peu comme une courtepointe géante de galaxies à travers le ciel. (voir Geller et Huchra 1989, Science 246, 897.)

La Grande Muraille elle-même peut être vue dans cette simple projection planaire de toutes les galaxies du CfA Survey avec des vitesses comprises entre 6 500 et 11 500 km/s dans la calotte galactique nord. Les galaxies avec des vitesses comprises entre 6 500 et 8 500 km/s sont représentées en points rouges et celles entre 8 500 et 11 500 sont en bleu. Parce que la Grande Muraille est légèrement inclinée dans l'espace de vitesse (voir la figure précédente), l'extrémité de la vitesse la plus élevée domine la partie est de la figure. La Grande Muraille est une surface qui a, comme prévu, une structure bidimensionnelle considérable --- des amas et des groupes de galaxies incrustés ainsi que des filaments et d'autres structures plus amorphes - essentiellement des régions à faible et à haute densité (voir, par exemple , Ramella, Geller et Huchra ApJ 384, 404, 1992). Le Coma Cluster est la région dense tout près du centre de la parcelle (13h et +29j).

La distribution du décalage vers le rouge du relevé CfA2 peut également être vue dans cette projection polaire des décalages vers le rouge pour toutes les galaxies du relevé CfA2 jusqu'à 12 000 km/s. Il s'agit d'une section d'un cylindre en coordonnées équatoriales allant du pôle nord à l'équateur avec une hauteur de 12 000 km/s et un rayon de 12 000 km/s. Les structures majeures vues sont à nouveau le Superluster Local juste au-dessus du milieu de la parcelle, la Grande Muraille coupant de 9 heures et 5 500 km/s à 15 heures et 9 000 km/s et le superamas Poissons-Persée centré autour de 1 hor et 4 000 km /s. La géométrie de cette projection est similaire à celle d'une rondelle de hockey.

La combinaison de plusieurs nouvelles enquêtes fournit également une nouvelle vue de la supergrappe locale. Le graphique ci-dessus montre la distribution dans tout le ciel de toutes les galaxies de ZCAT avec des vitesses héliocentriques inférieures à 3000 km/s. Cet ensemble est essentiellement composé d'objets du relevé CfA au nord, du relevé SSRS2 au sud, du relevé ORS dans les régions non couvertes par les autres plus le relevé IRAS 1.2-Jy partout, surtout aux basses latitudes galactiques (le petits points saupoudrés sur toute la carte). Malgré la faible couverture aux basses latitudes galactiques, le LSC et les régions centrales autour de son noyau, l'amas de la Vierge, se démarquent de manière assez spectaculaire.

Pour vous donner une idée des caractéristiques statistiques du catalogue CfA2, ces deux graphiques montrent les statistiques de comptage (log N - log S) et les statistiques V/Vm pour le catalogue CfA2 ci-dessus |b| = 30 degrés log(n)-log(s) , V/Vm . Pour une distribution uniforme dans l'espace euclidien, V/Vm doit être de 0,50. Ces graphiques montrent d'une part, un excès de galaxies plus brillantes par rapport à une normalisation à m_pg=13,5, qui a longtemps été associée à la présence du superamas local, et d'autre part, un léger excès apparent en dessous de la 15e magnitude qui peut être associé à la Grande Muraille . Notez que les tracés sont tous deux des statistiques intégrales (il est difficile de définir V/Vm pour des comptages différentiels !) Une partie de l'excès aux faibles magnitudes peut également être due aux non-linéarités dans l'échelle de magnitude de Zwicky-Nilson et de nombreuses références suivantes). La fonction de luminosité pour le catalogue (une mesure de la fonction de sélection), calculée à l'aide de la méthode simple V/Vm (Schmidt 1968 Huchra & Sargent 1973), est donnée en log phi , où phi est la densité en nombre de galaxies par intervalle de luminosité, c'est-à-dire le nombre de galaxies par intervalle de magnitude par mégaparsec cubique. Ceci est calculé pour une zone du ciel donnée par les limites (0-90j, 8h-17h, -2,5-90j, 20h-4h), qui couvre 36,15% du ciel, et suppose une chute de la Vierge de 250 km/ s, H_0=75 km/s/Mpc, et une correction d'extinction de 0,15csc(b). Il y a 13 977 galaxies dans ce catalogue de sous-ensemble.

Voici un lien vers la description du catalogue CfA Redshift : ZCAT DESCRIPTION. Vous pouvez accéder aux données de l'enquête CfA Redshift sur ce site Web. Le catalogue principal ZCAT2000 peut être téléchargé ici :

Il est nécessaire de télécharger le fichier via ftp en raison de sa taille. Il existe un fichier README décrivant les données stockées disponibles pour un usage public, les sources des redshifts, etc. et des informations sur la façon de les référencer si vous les utilisez. La version publique compressée du catalogue CfA Redshift est dans "velocity.dat.gz". Il existe également des fichiers pour les données de l'enquête CfA1 (cfa1.dat), les tranches CfA2 publiées et des sous-répertoires pour l'échantillon IRAS 1.2 Jy, l'UZC, l'ORS et de nombreuses autres enquêtes redshift disponibles.

Certains des petits catalogues peuvent être téléchargés directement à partir du Web. Ceux-ci sont:

En outre, voici quelques-uns des catalogues parents tels que le catalogue général Uppsala (UGC) de Nilson et une version lisible par machine du catalogue fusionné Zwicky-Nilson :

La dernière mise à jour de ce fichier date du 20 avril 2005. Les questions sur les sources doivent être adressées à J. Huchra. Si vous avez publié un article ou une base de données qui ne figure *pas* dans notre liste, veuillez me faire savoir si nous pouvons l'inclure !

Enfin, voici une liste partielle des étoiles et galaxies modèles que nous utilisons pour les vérifications et les études de vitesse :

et une courte liste utile d'étoiles standard pour la spectrophotométrie :

De nos jours, la plupart des modèles réels utilisés sont synthétiques et peuvent être obtenus auprès de Doug Mink ou de Mike Kurtz du SAO Telescope Data Center.


Comment la loi de Hubble relie-t-elle la distance à la vitesse ?

À l'origine, Hubble a découvert pour les galaxies proches que plus elles sont éloignées, plus elles s'éloignent rapidement de nous.
Sa loi était la suivante :

#v=H*d#
Ici, v est la vitesse, H est la constante de Hubble et d est la distance. La vitesse est calculée à partir du décalage vers le rouge par effet Doppler, la distance avec Cepheidas et la constante de Hubble est ce que vous mesurez en réel.

Plus tard, ils ont découvert que ce n'était pas le bon chemin, car ce ne sont pas les galaxies qui s'éloignent de nous, mais l'espace lui-même entre nous et la galaxie s'agrandit, et cela provoque le décalage vers le rouge. De plus, sur des distances suffisamment longues, la loi de Hubble n'est pas entièrement proportionnelle. En tenant compte de ces deux éléments, vous pouvez comprendre le passé de l'expansion et en prédire l'avenir. C'est ainsi qu'ils ont découvert l'expansion accélérée de l'Univers et l'énergie noire qui la provoque.


W Keith Fisher

La controverse du décalage vers le rouge a ses origines au milieu des années 1960, lorsque Halton Arp a observé que certains objets apparemment physiquement associés avaient des décalages vers le rouge très différents.Ses premières observations se sont concentrées sur les associations de grands quasars à décalage vers le rouge avec des galaxies actives à faible décalage vers le rouge. Il a proposé que les grands décalages vers le rouge observés pour les quasars étaient de non-vitesse, de nature non cosmologique et qu'ils étaient intrinsèques aux quasars eux-mêmes. Aucun mécanisme physique n'a été suggéré pour ces décalages vers le rouge intrinsèques autre qu'ils étaient causés par un nouveau processus physique qui se produit dans les quasars. D'autres observations ont montré que certains quasars à décalage vers le rouge élevé semblent être physiquement associés à des galaxies à faible décalage vers le rouge, que les décalages vers le rouge semblent avoir certaines valeurs préférées, que les associations de galaxies ont également des décalages vers le rouge disparates mais dans une moindre mesure que les paires quasar-galaxie, et que la distribution des quasars au-dessus du ciel n'était pas isotrope.

Aujourd'hui, la grande majorité des astronomes rejettent l'hypothèse de décalage vers le rouge intrinsèque non liée à la vitesse d'Arp. La plupart des astronomes remettent en question les méthodes statistiques utilisées par Arp pour déterminer si des objets de décalage vers le rouge discordants étaient vraiment associés, ou simplement des alignements aléatoires. C'est la position de la majorité de la communauté astronomique que l'interprétation conventionnelle du décalage vers le rouge, en tant que vitesse liée et indicative de la distance dans un univers en expansion, fournit l'explication la plus naturelle et la plus cohérente dans le cadre de la théorie du Big Bang. Cependant, Arp et quelques autres astronomes promeuvent toujours les décalages vers le rouge intrinsèques comme au moins une composante du total des décalages vers le rouge observés pour les quasars et les galaxies actives. La résolution de cette controverse est extrêmement importante pour l'astronomie et la science en général car, si l'interprétation non cosmologique s'avère avoir du mérite, elle nécessitera une révision majeure de notre compréhension actuelle de la cosmologie et de bon nombre des principes physiques que nous utilisons pour décrire le Origine et évolution de l'Univers.

Un bon point de départ pour notre discussion est la vision conventionnelle des quasars. Les quasars sont caractérisés par de très grands décalages vers le rouge de leurs raies d'émission. L'explication conventionnelle de ces décalages vers le rouge est cosmologique : les quasars participent à l'expansion de l'Univers. Si tel est le cas, alors leurs grands décalages vers le rouge indiquent qu'ils sont très loin de nous et doivent donc dépenser une énorme quantité d'énergie pour apparaître aussi brillant qu'ils le font à ces distances. Par exemple, considérons le cas d'un décalage vers le rouge de quasar de z=2, une valeur de décalage vers le rouge pour certains quasars qui sera discuté plus tard dans cet article. En utilisant la formule relativiste pour le redshift (la formule non relativiste donne v>c pour z>1) on obtient pour la vitesse de récession

Pour obtenir une distance approximative, nous utilisons la valeur actuellement acceptée du paramètre Hubble de 71 (km/sec)/Mpc, ce qui donne une distance de 3400 Mpc ou 11 milliards d'années-lumière. Le fait que ces objets puissent être observés à ce type de distance indique qu'un quasar typique produit environ 1000 fois plus d'énergie qu'une galaxie spirale moyenne.

Non seulement les quasars émettent de l'énergie à des taux énormes, mais cette énergie provient d'objets qui ne sont pas plus gros que quelques années-lumière de diamètre. Cela définit le problème énergétique des quasars : comment générer 1000 fois l'énergie d'une galaxie dans une région de seulement quelques années-lumière de diamètre. Ce problème énergétique a été l'une des motivations de la recherche d'une explication non cosmologique. Cependant, il a été découvert que l'accrétion gravitationnelle de matière dans des trous noirs massifs dans les noyaux denses des galaxies peut expliquer la puissance nécessaire (Silk 1989 p.266-269).

Cette interprétation des décalages vers le rouge des quasars est cohérente avec la théorie du Big Bang et les théories actuelles de l'évolution des galaxies. Les quasars sont tous des objets très éloignés avec des temps d'analyse correspondants. On pense que les quasars représentent les premiers stades de la formation des galaxies et que l'origine de leurs décalages vers le rouge est similaire à l'origine des décalages vers le rouge dans les galaxies lointaines. Le décalage vers le rouge de leurs spectres est un décalage Doppler cosmologique, qui résulte de leur récession à des vitesses élevées sur de grandes distances. Le décalage vers le rouge gravitationnel de la lumière émergeant de puits de potentiel profonds tels que ceux créés par les trous noirs massifs a été proposé comme l'origine des grands décalages vers le rouge observés. Cependant, cette hypothèse a été invalidée sur la base de preuves de raies d'émission spectrales plus étroites que ce à quoi on pourrait s'attendre dans des champs gravitationnels aussi puissants (Silk 1989, p.256-263). De plus, la diffusion Compton (diffusion inélastique de photons à partir d'électrons libres) a été rejetée comme origine des décalages vers le rouge car il n'y avait pas d'ensemble raisonnable de conditions où cet effet pourrait expliquer des décalages vers le rouge aussi élevés (Zhang 2008). Ainsi, aujourd'hui, la grande majorité des astronomes est d'avis que les quasars sont en effet à de grandes distances et que leurs décalages vers le rouge proviennent de l'expansion de l'Univers entre les moments de leur création au début de l'histoire de l'Univers jusqu'à nos jours.

Cependant, des preuves ont commencé à s'accumuler qui contredisaient l'opinion conventionnelle selon laquelle les quasars sont extrêmement éloignés. En 1966, Arp remarqua que certains quasars à fort décalage vers le rouge tombaient à proximité et s'alignaient sur certaines galaxies particulièrement perturbées à des décalages vers le rouge beaucoup plus faibles. S'ils étaient vraiment associés à des galaxies relativement proches, ils devraient eux-mêmes être relativement proches (Arp 1987, p.7). Il a été conclu que ces quasars avaient été éjectés dans une sorte de processus explosif. Les grands décalages vers le rouge associés à ces quasars ont été considérés comme intrinsèques au quasar et non liés à la vitesse. En fait, il a été proposé que le décalage vers le rouge évoluait avec le temps à mesure que les quasars étaient éjectés, un décalage vers le rouge élevé se produisant juste après l'éjection se transformant progressivement en un décalage vers le rouge plus faible avec le temps à mesure que le quasar s'éloignait du parent (Arp 1981).

De plus, il existe quelques cas d'objets avec des décalages vers le rouge très différents mais montrant l'apparence d'une interaction directe. Les exemples incluent à la fois des quasars à décalage vers le rouge élevé connectés à des galaxies à faible décalage vers le rouge par des filaments ou des bras lumineux et des paires de galaxies à décalage vers le rouge discordantes connectées de la même manière. Certains cas bien connus incluent Stephans’ Quintet, MGC 4319 avec le quasar Markarian 205 et NGC 7603. La réalité des associations apparentes n'a pas été absolument établie. La résolution de cette question attend une analyse statistique plus poussée.

Nous voici donc au cœur de la polémique. La réalité des associations apparentes de quasars à fort décalage vers le rouge avec des galaxies à faible décalage vers le rouge et la périodicité des décalages vers le rouge dépendent des méthodes statistiques utilisées pour analyser les données. Il existe des preuves statistiques en faveur de la nature non cosmologique des quasars et des galaxies avec de grands décalages vers le rouge et d'autres arguments statistiques ne montrant aucune association significative de quasars avec des galaxies à faible z et aucune périodicité significative de décalages vers le rouge.

Dans cet article, je discuterai des preuves à la fois pour et contre l'interprétation non cosmologique des quasars et des décalages vers le rouge des galaxies, y compris l'analyse de la base de données fournie par SDSS. Je discuterai de la théorie de l'éjection des quasars comme explication de l'association apparente des quasars avec les galaxies et de la périodicité apparente ou des valeurs préférées du décalage vers le rouge. J'aborderai également les mécanismes physiques possibles du redshift intrinsèque (en un mot, il n'y en a pas).

II. Redshift non cosmologique : données probantes et modèles

Il y a quelques années, l'hypothèse a été avancée que certains quasars étaient physiquement associés à des galaxies compagnes. Cette hypothèse était initialement basée sur l'analyse de la distribution des sources radio, y compris les quasars, autour de galaxies particulières actives réalisée par Halton Arp (1967). Il a trouvé une tendance statistiquement significative des sources radio à se regrouper autour de ces galaxies actives et que les sources radio semblent avoir été éjectées des galaxies mères actives. Dans le cas des quasars, Arp a conclu que leurs décalages vers le rouge ne doivent pas être causés par la vitesse, mais sont intrinsèques au quasar. Il a basé cette conclusion sur l'absence de décalages bleus ou même de décalages bleus relatifs auxquels on s'attendrait si les décalages étaient en grande partie des décalages liés à la vitesse Doppler. L'absence de tout décalage vers le bleu indiquait que la vitesse d'éjection était suffisamment faible pour ne contribuer à aucune composante significative du décalage total vers le rouge. D'autres sources radio associées aux galaxies actives avaient des caractéristiques similaires à celles des quasars, sauf dans une moindre mesure, ce qui suggérait à Arp qu'elles pouvaient représenter une sorte de séquence évolutive. Initialement, des quasars à décalage vers le rouge élevé ont été éjectés par une galaxie mère. Les décalages vers le rouge des quasars se sont ensuite détendus à des valeurs inférieures avec le temps. Il a été proposé qu'au fur et à mesure que les décalages vers le rouge se détendaient, les quasars évoluaient en galaxies au comportement plus normal, peut-être avec un étage radio dans le cadre de leur évolution (Arp 1967).

En 1978, Arp a échantillonné des spirales brillantes avec des galaxies compagnes. Il avait découvert auparavant que les galaxies compagnes des galaxies centrales plus grandes avaient tendance à avoir plus de quasars associés, probablement parce que les compagnons étaient plus jeunes et plus actifs et ont donc éjecté plus de quasars (Arp 1987 p.20). Dans cette étude, il a identifié des candidats quasars par photographie avec l'appareil photo 48 & 8221 Schmidt au mont. Palomar en deux couleurs pour identifier les objets d'apparence stellaire avec un excès d'ultraviolets, ce qui est caractéristique des quasars. Ensuite, il a utilisé le spectrographe du télescope de 5 mètres pour obtenir des spectres individuels afin de confirmer leur identité en tant que véritables quasars.

À partir de 34 galaxies candidates prédéfinies, il a trouvé 13 cas où les quasars sont tombés si près des galaxies que les chances n'étaient, dans des cas individuels, que d'environ une sur 100 d'être accidentellement associées. Trouver 13 cas de ce type sur un nombre limité d'essais impliquait une étrangeté fantastique contre le fait qu'il s'agisse d'un événement fortuit. Arp a calculé environ 10 à 17 probabilités d'occurrence fortuite (Arp 1987).

Il convient à ce stade de discuter brièvement de l'approche d'analyse statistique d'Arp, car ses données et ses statistiques constituent le principal ensemble de preuves de l'hypothèse du décalage vers le rouge non cosmologique. Le facteur critique pour déterminer la réalité d'une association apparente de quasars à z élevé avec des galaxies à faible z est la probabilité que la proximité observée ne soit qu'un alignement aléatoire. La méthode d'Arp pour déterminer si les associations quasar/galaxie étaient réelles consistait à rechercher un quasar autour d'une galaxie candidate. Lorsqu'un quasar a été trouvé, la probabilité de trouver accidentellement un quasar de cette luminosité près de la galaxie a été calculée. Afin de calculer la probabilité, une densité de fond de ciel de 10 quasars par degré carré jusqu'à la magnitude B=V= 20 a été adoptée. Ce nombre a été réduit d'un facteur 4 pour chaque limite de magnitude plus lumineuse de sorte que pour la magnitude V = 19, une densité de fond de 2,5 par degré carré a été utilisée. Par exemple, pour calculer le nombre de quasars de fond jusqu'à la magnitude 20 qui tombent dans un rayon de 60 & 8221 d'une galaxie, nous calculons que dans ce rayon, il y a 0,001 degré carré. La densité de fond moyenne des quasars jusqu'à la magnitude 20 est d'environ 10 par degré carré. Par conséquent, nous nous attendrions à trouver 0,001x10=0,01 quasars de fond dans les 60”. Ainsi, la chance de trouver un quasar de fond dans notre petit cercle 60–8221 est de 1 sur 100 (Arp 1987, p.15).

Revenons maintenant au cas de 13 associations quasars/galaxie proches dans un échantillon de 34 galaxies mentionnées ci-dessus en supposant qu'une probabilité de trouver un quasar individuel est de 0,01 ou moins, ce qui est une probabilité raisonnable basée sur la densité de fond moyenne telle que calculée ci-dessus, pour obtenir la probabilité que 13 associations sur un échantillon de 34 galaxies soient un alignement aléatoire, nous utilisons la fonction de distribution binomiale

C'est la probabilité d'une association accidentelle.

La méthode d'Arp&8217s consistait à identifier les quasars autour des galaxies à des distances radiales de plus en plus grandes jusqu'à ce que la probabilité d'un quasar individuel provenant de la distribution de fond soit supérieure à 0,01 en utilisant la densité de fond des quasars à l'échelle comme indiqué ci-dessus. La probabilité globale d'association accidentelle a ensuite été calculée à l'aide de la distribution binomiale, comme indiqué ci-dessus. D'autres analyses statistiques ont également montré un excès de sources à fort décalage vers le rouge à proximité des galaxies à faible décalage vers le rouge (Lopez-Corredoira 2009).

De nombreux cas individuels montrant un excès apparent de quasars avec un décalage vers le rouge élevé près du centre des galaxies proches à faible décalage vers le rouge, principalement avec des AGN’, ont été découverts. Dans certains cas, les quasars ne sont qu'à quelques secondes d'arc du centre des galaxies. Les exemples sont NGC 613, NGC 1068, NGC 1097m NGC 3079, NGC 3842, NGC 6212, NGC 7541, NGC 7319 (galaxy quasar séparation 0.8”), 2237+0305 (séparation : 0.3”) et 3C 343.1 ( séparation : 0,25”) (Lopez-Corredoira 2009).

Des cas d'association apparente d'objets avec des décalages vers le rouge discordants ont par la suite été découverts par Arp avec des probabilités d'alignements aléatoires de l'ordre de 10-8 à 10-19. Si Arp a raison dans sa classification des objets d'association comme étant des quasars et que ses statistiques sont correctes alors il faut admettre que les quasars sont de luminosité relativement faible, des objets proches dont les décalages vers le rouge positifs élevés sont actuellement inexpliqués. La seule façon d'éviter cette conclusion est de soutenir que la densité de fond moyenne des quasars éloignés est environ 20 fois supérieure à ce qu'elle est actuellement mesurée (Arp 1981). Nous verrons plus loin dans cet article qu'il y a beaucoup de scepticisme concernant les résultats d'Arp’s.

En 1979, Arp (Arp 1987 p.9-10) a découvert qu'il y avait trois quasars projetés près du bord de la galaxie spirale NGC 1073. C'était le premier exemple de quasars multiples très proches d'une galaxie. Il a calculé la probabilité que trois quasars soient observés par hasard aussi près de la galaxie que 2x10-5. Un autre exemple est NGC 622 où une paire de quasars est apparue très près de cette galaxie. Un filament de matière qui relie le quasar à la galaxie est particulièrement important. Ce filament de connexion suggère l'éjection de la galaxie comme explication de l'origine de cette association. La découverte de l'alignement des quasars à travers les galaxies perturbées et la similitude avec les sources radio dont l'alignement est causé par l'éjection des noyaux galactiques actifs, suggère une origine d'éjection pour les quasars également. L'implication est que les quasars sont éjectés du noyau de la galaxie associée.

Le tableau 1 de l'article d'Arp’s 1981 a donné un résumé des quasars à z élevé associés aux galaxies à faible z. Notez que les valeurs z du décalage vers le rouge des galaxies sont données en km/sec conformément à une interprétation du décalage Doppler, mais les valeurs z du quasar sont données directement. Pour convertir les valeurs z de la galaxie en valeurs z directes, divisez-les par la vitesse de la lumière (3x105 km/sec). Tous les décalages vers le rouge des galaxies sont beaucoup plus petits que les décalages vers le rouge des quasars, suggérant une fois de plus une origine non-vitesse des décalages vers le rouge des quasars.

En 1983, Arp a publié les résultats d'une analyse statistique plus poussée pour l'association de quasars autour de galaxies qui étaient des compagnons de grandes galaxies spirales (Arp 1987, p.24-25). Sur la base d'un échantillon de 15 quasars, il a constaté qu'ils se concentrent à une distance radiale comprise entre 7 et 20 kpc. Selon son analyse, la densité de quasars à ces distances radiales de leurs galaxies associées dépasse de plus de 20 fois la densité mesurée de quasars loin de ces galaxies.

Un autre exemple de regroupement de quasars autour des galaxies est le prétendu excès de quasars autour de l'amas de galaxies du Sculpteur (Arp 1987 : 74).

Arp indique que la distribution des quasars à décalage vers le rouge élevé dans le ciel est une preuve supplémentaire de décalages vers le rouge sans vitesse. Les résultats de la distribution des quasars dans de vastes zones du ciel indiquent que les quasars à fort décalage vers le rouge sont concentrés préférentiellement dans la moitié du ciel en direction du Groupe Local avec une concentration beaucoup plus faible dans l'autre moitié du ciel vers le Superamas de la Vierge. Cela montre que bon nombre des quasars connus proviennent de galaxies relativement proches de nous (Arp 1987 : 69-70)

En plus des preuves statistiques de l'association des quasars à z élevé aux galaxies à faible z, des connexions physiques apparentes entre les quasars et les galaxies de décalages vers le rouge discordants ont été observées. Les photographies du quasar PKS 1327-206 montrent clairement un filament lumineux reliant le quasar à une galaxie malgré z=0,018 pour la galaxie et z=1,17 pour le quasar. Arp propose que, puisque ce quasar est assez brillant en magnitude apparente, cette paire de quasars de galaxies pourrait être proche de nous et le quasar expulsé par la galaxie (Arp 1987, p.38). D'autres exemples de quasars connectés aux galaxies compagnes par des filaments lumineux sont NGC 5297/96m NGC 5682 et NGC 7413. Dans tous ces cas, le décalage vers le rouge du quasar est supérieur à celui de la galaxie à laquelle il est apparemment connecté. Comme nous le verrons plus tard, la plupart des astronomes sont très sceptiques quant à la réalité de ces connexions.

Un autre exemple important de quasar à fort redshift (zc=21 000km/sec) connecté à une galaxie à faible redshift (zc=1700 km/sec) est le cas de NGC 4319 et du quasar Markarian 205. Travail de traitement d'image effectué par Jack Sulentic sur plaques faites à l'aide du mont. Le télescope Palomar de 5 mètres montrait clairement un pont lumineux reliant le quasar à la galaxie. Ce pont lumineux continue tout droit vers le noyau de la galaxie et indique peut-être que le quasar a émergé du noyau de cette galaxie fortement perturbée (Arp 1987, p.33).

Les données de Chandra et XMM-Newton montrent de nombreux quasars discrets émetteurs de rayons X puissants avec une large gamme de décalages vers le rouge à proximité des noyaux des galaxies spirales. Les données suggèrent à nouveau que ces sources sont physiquement associées aux galaxies et sont en train d'en être éjectées. Un exemple spécifique est le quasar émetteur de rayons X très proche du noyau de NGC 7319. z=2.114 pour le quasar et z=0.0225 pour NGC 7319 (Galianni 2005).

NGC 3067/3C232, NGC 3628, ESO 1327-2041 se connectent au quasar 1327-206, 4C17.09, UGC 892 et autres exemples où des filaments/ponts/bras connectent apparemment des objets de décalages vers le rouge très différents (Lopez-Corredoira 2009). .

Il est prouvé qu'en plus des paires quasar/galaxie, certaines paires de galaxies en interaction présentent également des décalages vers le rouge discordants, mais dans une moindre mesure que les paires quasar/galaxie. Un exemple est la galaxie Seyfert NGC 7603 et son compagnon. Il est généralement admis que le compagnon est physiquement connecté à NGC 7603 mais le décalage vers le rouge de la plus grande galaxie correspond à une vitesse de 8700 km/sec et le plus petit compagnon a un décalage vers le rouge de 17 000 km/sec (Arp 1982).

L'association physique d'objets avec des décalages vers le rouge discordants n'est pas la seule preuve revendiquée pour les décalages vers le rouge non cosmologiques. Une autre preuve, difficile à expliquer en utilisant l'interprétation conventionnelle, est la périodicité des redshifts. Dans un univers homogène et isotrope, nous nous attendons à ce que la distribution du décalage vers le rouge des objets extragalactiques se rapproche d'une distribution continue et apériodique. Il ne devrait pas y avoir de valeurs préférées de redshift.

Les premières études des décalages vers le rouge des raies d'absorption des quasars ont indiqué une valeur préférée de décalage vers le rouge z = 1,95. Ce décalage vers le rouge était considéré comme de nature non cosmologique et intrinsèque aux quasars. L'absorption par le milieu interstellaire a été exclue comme cause dans ce cas. Cette conclusion était basée sur un échantillon très limité (7 quasars) et aucun mécanisme n'a été proposé pour produire préférentiellement cette valeur de redshift (Burbidge 1967).

Des études plus détaillées de Karlsson ont rapporté une périodicité pour les quasars de 0,089 de la fonction log(1-z) pour les décalages vers le rouge des raies d'émission des quasars. Cette conclusion était basée sur l'analyse de 574 décalages vers le rouge des quasars.Il prétend que cette périodicité est réelle et non le résultat d'effets de sélection comme l'étaient les résultats de périodicité antérieurs. Lorsque les quasars étaient associés à des galaxies à faible décalage vers le rouge, le z par rapport au référentiel de repos de la galaxie doit être utilisé. Le modèle de Karlsson prédit des pics situés à des valeurs z de 0,061, 0,30, 06,0, 0,96, 1,14, 1,96 et ainsi de suite. La formule de Karlsson prédit le pic observé par Burbidge (1967 Karlsson 1977 Lopez-Corredoira 2009).

Karlsson reconnaît la difficulté d'expliquer cette périodicité en utilisant le modèle cosmologique conventionnel pour les redshifts, mais note que la périodicité n'est pas une preuve concluante contre l'interprétation cosmologique des redshifts. Les pics pourraient correspondre à des périodes actives de l'histoire de l'Univers. L'interprétation non cosmologique des décalages vers le rouge des quasars ne fournit pas non plus d'explication vraiment convaincante pour la périodicité (Karlsson 1977).

Comme mentionné à plusieurs reprises dans cet article, l'hypothèse des associations de quasars avec des galaxies actives était que les quasars étaient éjectés des noyaux des galaxies. Une hypothèse évolutionniste proposée par Arp (1967) était que des objets compacts étaient éjectés des noyaux galactiques, éventuellement à des vitesses très élevées, avec initialement une densité très élevée, une température élevée et de grands décalages vers le rouge (quasars et objets BL Lac). En vieillissant, les étoiles sont apparues à mesure que le décalage vers le rouge diminuait. À mesure que le décalage vers le rouge diminuait, la luminosité augmentait. Enfin, des halos étendus ou des traits en spirale sont apparus et le décalage vers le rouge non cosmologique a disparu. La plupart des quasars ne sont donc pas à des distances cosmologiques et ressemblent davantage à des supergéantes brillantes en luminosité qu'aux balises incroyablement lumineuses qui peuvent être observées à des milliards d'années-lumière (Keal 2003).

Narlikar et Arp ont proposé un modèle cosmologique alternatif au Big Bang pour tenir compte des preuves de décalages vers le rouge intrinsèques ainsi que du grand nombre de preuves de décalages vers le rouge cosmologiques. Leur proposition remonte à l'univers à l'état stationnaire de Hoyle en supposant un univers rempli de matière, plat et statique (Narlikar 1993).

Selon leur hypothèse, toutes les masses de particules évoluent avec l'espace et le temps selon m=at2 où t est le temps et a est une constante. Cette relation dérive d'une cosmologie espace-temps plate où la lumière voyage sans décalage spectral. Le décalage vers le rouge cosmologique observé est une conséquence de l'augmentation systématique de la masse des particules avec le temps, car la longueur d'onde de l'émission de lumière évolue en sens inverse de la masse. Hoyle explique le décalage vers le rouge cosmologique en termes de temps rétrospectif vers une galaxie lointaine, ce qui le montre à une époque antérieure où ses masses de particules étaient plus petites et la longueur d'onde de la lumière émise plus longue (Narlikar 1993).

Les décalages vers le rouge qui résultent des différences d'âge pourraient résoudre le problème de périodicité. Matériau émergeant de la masse zéro, le domaine de la mécanique quantique peut le faire par rafales discrètes espacées à des intervalles de temps discrets. Cela pourrait conduire à certaines valeurs préférées de redshift (Narlikar 1993).

L'excès de quasars autour des galaxies actives peut être décrit comme ci-dessus par un mécanisme d'éjection des noyaux galactiques actifs. Ceci serait suivi d'une évolution de l'état de quasar à z élevé vers des galaxies normales à faible z avec le décalage vers le rouge intrinsèque disparaissant progressivement et cédant la place à un décalage vers le rouge conventionnel basé sur la vitesse. Je ne comprends toujours pas comment cette cosmologie hypothétique explique le décalage vers le rouge intrinsèque. Peut-être qu'invoquer l'augmentation des masses de particules avec le temps et la relation inverse entre la longueur d'onde émise et la masse comme décrit ci-dessus fournirait une explication.

La prise en compte des propriétés observées du fond micro-ondes est un problème avec l'hypothèse de Nalikar et Arp’s. Ils envisagent le fond micro-ondes comme provenant de l'apparition de mini-bangs dans le temps entraînant, par exemple, l'éjection de quasars des noyaux galactiques et la création du fond micro-ondes. Hoyle a montré qu'un mini-bang de

5x1015 masses solaires pourraient simuler la nucléosynthèse du big bang. Il est difficile d'imaginer comment des minibangs discrets pourraient conduire au rayonnement de fond parfait du corps noir 3K qui a été observé. Des minibangs assez discrets pourraient bien conduire à une quantification de la distribution de l'énergie de fond des micro-ondes qui n'a jamais été observée. La thermalisation jusqu'à l'homogénéité et l'isotropie observées du fond micro-onde est un problème majeur avec cette approche (Narlikar 1993).

Une explication proposée pour le redshift intrinsèque indique qu'il est déterminé uniquement par le potentiel gravitationnel associé spécifiquement aux objets dans lesquels se trouvent les sources émettrices. Au cours du processus au cours duquel les quasars évoluent en galaxies ordinaires, la fragmentation et la formation d'étoiles entraînent une réduction des puits de potentiel gravitationnel à travers lesquels la lumière émise doit voyager, ainsi les décalages vers le rouge deviennent plus petits (Ching-Chuan Su 2006). Silk (1989 p.259-261) a souligné que l'élargissement attendu de la raie d'émission qui devrait se produire si les redshifts gravitationnels étaient un facteur important dans le redshift total n'avait pas été observé.

Je dois mentionner ici une autre hypothèse non cosmologique qui cherche à rendre compte des redshifts. En principe, la lumière pourrait être décalée vers le rouge par des effets autres que le décalage Doppler lié à la vitesse. L'un de ces effets pourrait être ce que l'on appelle l'effet de lumière fatiguée. Les quanta de lumière pourraient perdre de l'énergie par un mécanisme mystérieux lorsqu'ils traversent l'espace depuis des galaxies éloignées. Cette diminution d'énergie se traduirait par un décalage vers le rouge dépendant de la distance. Il n'y a pas de cause physique connue pour une telle perte d'énergie, mais de petits effets insignifiants à l'échelle locale peuvent se manifester sur l'immensité de l'espace interstellaire.

Cette hypothèse de lumière fatiguée est cependant généralement écartée car elle spécifie un univers statique. Tout modèle d'univers statique a des difficultés à prendre en compte le fond diffus cosmologique et les abondances d'éléments lumineux en raison de l'absence d'un événement de création de big bang chaud (Silk 1989 p.396-397).

III. Preuves contre les redshifts non cosmologiques

La grande majorité de la communauté astronomique soutient l'interprétation cosmologique du décalage vers le rouge et que les cas d'association apparente d'objets avec des décalages vers le rouge discordants ne sont que des projections aléatoires d'objets d'arrière-plan/premier plan. Cette interprétation du décalage vers le rouge comme étant causée par la vitesse de récession communiquée par l'expansion de l'Univers et donc indicative de la distance, est cohérente avec les tenants de la théorie du Big Bang, qui est la meilleure explication que nous ayons pour l'origine et la structure observée de l'Univers. . Selon cette interprétation, les quasars sont très éloignés et représentent une ère précoce de l'évolution galactique. L'expansion de l'Univers fournit un mécanisme naturel pour produire des décalages vers le rouge et une explication raisonnable de la relation entre la distance et le décalage vers le rouge.

Une objection à certains des résultats passés concernant l'association d'objets avec des décalages vers le rouge discordants était que les statistiques étaient basées sur de petits échantillons ou sur seulement quelques galaxies sélectionnées à partir d'un grand échantillon. Afin de tester rigoureusement la validité de ces associations en utilisant une très grande taille d'échantillon, Tang (2008) a utilisé les données de la plus haute qualité de Sloan Digital Sky Survey (SDSS) pour tester l'affirmation selon laquelle il existe un excès de quasars autour des galaxies actives proches. La taille de l'échantillon était de 190 591 galaxies et 15 747 quasars. Les données ont été comparées avec les modèles d'éjection et il a été constaté que la distribution radiale des quasars des galaxies actives était entièrement cohérente avec les quasars et les galaxies distribués aléatoirement et incompatible avec les modèles d'éjection. Il n'y avait aucune indication significative d'un nombre excessif de quasars dans les régions autour des galaxies actives (Tang 2008).

La méthode d'analyse de Tang’s (2008) consistait en des tests statistiques effectués en utilisant différentes hypothèses de quasars et de galaxies distribués au hasard, des quasars éjectés au hasard dans lesquels les quasars ont été produits par éjection de galaxies choisies au hasard avec un âge uniformément distribué de 0 à 108 ans et trois vitesses d'éjection différentes (11 000, 40 000 et 80 000 km/sec). 200 simulations informatiques pour chaque ensemble de conditions ont été exécutées et les résultats tracés comme le nombre attendu de paires associées par rapport à la distance projetée entre les quasars à z élevé et les galaxies actives. Les données réelles correspondent le mieux au modèle de quasar distribué aléatoirement. La conclusion est qu'il n'y a aucune preuve solide dans les données SDSS soutenant l'hypothèse du quasar non cosmologique.

Tang (2008) souligne qu'il existe de nombreux exemples solides qui ne peuvent être expliqués que si les quasars sont à des distances cosmologiques. La lentille gravitationnelle observée des quasars produits par les galaxies de premier plan, où les quasars doivent être beaucoup plus éloignés que les galaxies lentilles, qui elles-mêmes ont des décalages vers le rouge de l'ordre de z>=0,5, en est un exemple. La lentille devrait créer un excès apparent de quasars dans la direction des galaxies intermédiaires (Keal 2003). De plus, la présence de la forêt Lyman-alpha et du creux de Gunn-Peterson observés dans les quasars à fort décalage vers le rouge indique que la lumière de ces quasars a dû traverser un milieu interstellaire à fort décalage vers le rouge avec de grandes densités d'hydrogène neutre intégrées (Tang 2008).

Il y a un débat actif sur la validité des périodicités de redshift. En 2002, Hawkins et al. utilisé des données 2dF pour tester la périodicité dans log(1+Zquasar) et n'a trouvé aucune périodicité (Tang 2008). Arp et al. (2005) ont critiqué Hawkins en citant son incapacité à prendre en compte les facteurs critiques de distance et de luminosité des galaxies mères. Arp a souligné que la myriade de galaxies très faibles produira de nombreux alignements aléatoires masquant ainsi une véritable périodicité. Tang (2005) a utilisé la grande base de données des décalages vers le rouge des quasars et des galaxies actives de la base de données SDSS pour tester la périodicité, en tenant compte des critiques d'Arp sur le travail de Hawkins. Arp a suggéré que des quasars brillants seraient à proximité et qu'en utilisant des données de décalage vers le rouge pour ces quasars, les relations de périodicité seraient plus apparentes qu'en examinant des quasars éloignés et en appliquant des facteurs de correction. Par conséquent, un sous-échantillon de quasars brillants avec des magnitudes inférieures à 18,5 a été analysé. Les résultats de cette analyse n'ont montré aucune périodicité en log (1+z) ou toute autre fréquence et aucun lien entre les galaxies actives de premier plan et les quasars à fort décalage vers le rouge (Tang 2005).

De plus, les travaux de John Bachall et al. (Bachall 1992) ont montré des raies d'absorption dans le spectre de Markarian 205 produites par des ions Mg II dans la galaxie spirale intermédiaire NGC 4319. Ce résultat était cohérent avec l'interprétation cosmologique des décalages vers le rouge de Markarian 205 et NGC 4319, selon laquelle les deux les objets sont un alignement aléatoire qui sont projetés près les uns des autres dans le ciel et la lumière de Markarian 205 traverse le disque et le halo de NGC 4319 (Bachall 1992). De plus, d'autres observations de quasars distants ont montré qu'ils se trouvent dans des galaxies avec le même décalage vers le rouge, fournissant des preuves solides que les quasars sont quelque chose qui se produit dans le noyau des galaxies (Keel 2003

La controverse du redshift a presque disparu de la vue. Les preuves accablantes de la théorie du Big Bang, qui exigent que les décalages vers le rouge soient interprétés comme causés par la vitesse de la récession et indiquant la distance dans un univers en expansion, ont conduit la grande majorité des astronomes à écarter les explications alternatives non cosmologiques des décalages vers le rouge.

Je suis d'accord avec le point de vue conventionnel selon lequel les décalages vers le rouge sont de nature cosmologique et que la théorie du Big Bang existante est une description supérieure à la cosmologie de Narlikar et Arp's basée sur un univers statique avec des décalages vers le rouge intrinsèques non liés à la vitesse. Leur approche est tout simplement trop artificielle, en particulier en ce qui concerne l'homogénéité, l'isotropie et la nature du corps noir du rayonnement de fond micro-ondes. Une autre faiblesse de l'hypothèse du décalage vers le rouge non cosmologique est l'absence de tout processus physique raisonnable pour produire des décalages vers le rouge. Cependant, on ne peut s'empêcher de considérer au moins que, sur la base des études approfondies menées par Arp et d'autres, il peut y avoir un certain degré de décalage vers le rouge intrinsèque présent dans les spectres des quasars. Peut-être que certaines des interactions quasar/galaxie sont réelles. Il se peut que les redshifts observés soient une combinaison de composants cosmologiques et intrinsèques. Les redshifts intrinsèques peuvent s'atténuer si rapidement qu'ils sont rarement observés.

Malgré le déclin des modèles de décalage vers le rouge non cosmologiques, ce débat a servi un objectif très utile pour l'avancement de la cosmologie dans son ensemble. Cela a amené les astronomes à examiner de près leurs données et hypothèses sous le paradigme du modèle du Big Bang en réponse à la proposition révolutionnaire d'Arp de décalages vers le rouge non cosmologiques. Dans ce cas particulier, il semble que le paradigme existant du Big Bang ait été justifié principalement à cause de preuves statistiques et parce que le modèle cosmologique concurrent qui comprenait des décalages vers le rouge intrinsèques ne pouvait pas expliquer les propriétés observées de l'Univers aussi naturellement et simplement que le Big Bang.

La cosmologie du Big Bang a cependant ses propres problèmes. Les astronomes ont critiqué la proposition de décalage vers le rouge intrinsèque car elle ne fournissait pas de mécanisme physique convaincant pour produire des décalages vers le rouge. Le Big Bang a de la matière noire et de l'énergie noire. Malgré des efforts expérimentaux acharnés, personne n'a encore détecté de matière noire. Une révolution de changement de paradigme peut encore être à l'avenir pour la théorie du Big Bang.


Voir la vidéo: Punane sekund N 12. oktoobril kell ETVs (Novembre 2022).